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ABSTRACT

- . -

A ' Morrow, Robert Kendall, Jr., Ph.D., Purdue University, May 1988. Bit-to-Bit
Error Dependence in Direct-Sequence Spread-Spectrum Multiple-Access Packet
Radio Systems. Major Professor: James S. Lehnert.

)

D)

! ;l\ Slotted direct-sequence spread-spectrum multiple-access (DS/SSMA)
‘. packet broadcasting systems with random signature sequences are analyzed
i within the framework of the lower three layers of the International Standards
‘ Organization Reference Model of Open Systems Interconnection. At the physi-
‘ cal layer, we show that a widely-used Gaussian approximation (which we call
i the Standard Gaussian Approximation) for the probability of data bit error in

a chip and phase asynchronous system is accurate only when there are a large
number of simultaneous users on the channel; otherwise, this approximation
can be optimistic by several orders of magnitude. For interfering signals with
fixed delays and phases relative to the desired signal, however, the Standard
Gaussian Approximation is quite accurate for any number of simultaneous
users. To obtain a closer approximation to the probability of data bit error
for an asynchronous system, we introduce the Improved Gaussian Approxima-
tion, which involves finding the distribution of the multiple-access interference
variance over all possible delay and phase values and then taking a Gaussian

approximation over the support of the distribution and averaging the results.

To accurately analyze packet performance at the data link layer, we first
use the theory of moment spaces to gain insight on the effect of bit-to-bit error

dependence caused by the constant relative delays and (possibly) phases of the
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F interfering signals over the duration of a desired packet./ If no error control is
R4
used, we find that this error dependence increases the average probability of
N
" packet success. When error control is employed and the channel is lightly
)
4 loaded, then packet performance diminishes when bit error dependencies exist,
“
LN
but performance improves when the channel is heavily loaded and the
K)
:' multiple-access interference is high. Numerical results for the probability of
D
" packet success are obtained through the Improved Gaussian Approximation.
- At the network layer, provided packet losses occur only from data bit
v
D
:‘ errors due to multiple-access interference, we show that a DS/SSMA packet
i
N radio system using the slotted ALOHA protocol possesses a significant
= throughput advantage over that of an equivalent narrow-band slotted ALOHA
:' system. Furthermore, if error control is used to correct some of the data bit
v
. errors in the packet, then the maximum throughput per unit bandwidth of the
i' DS/SSMA system is also higher.
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CHAPTER 1
INTRODUCTION

Finding efficient methods of transmitting digital data between two or

[ RN
IS ¥

more nodes in a communication network is a topic of great interest: as the

need for reliable communication increases, higher and higher demands are

-

placed upon the limited radio spectrum to provide channels to carry this data.

Packet broadcasting systems have been widely used to allocate radio

O R

communication channels in such a way that users with bursty traffic can share

a common frequency without significant degradation to a single user’s

throughput or average packet delay. Because of the multiple-access nature of v

the packet system, total channel throughput is increased dramatically. X

4 e

Spread-spectrum radio systems also allow multiple-access to the channel by

' wide-band averaging (direct sequence) or avoidance (frequency hopping),

making it possible for multiple users to send data on the channel

: simultaneously. Additional advantages of the spread-spectrum signaling

technique include communication security and reduced intersymbol

) interference from multipath. o

If two or more packets are transmitted simultaneously over a narrow-

1
h band communication channel, a ‘“‘collision” occurs, resulting in the destruction |

of all packets involved. Since multiple users can coexist on a spread-spectrum

channel, the concept of a packet collision is no longer applicable in the strict

v sense; instead, the probability of a successful packet gradually reduces as :
Y

b channel traffic increases. Because of this special multiple-access capability,

spread-spectrum packet communication is well-suited to the ALOHA

transmission technique, whereby a message is transmitted as soon as it arrives

ey

if the system is unslotted, or at the beginning of the next time slot otherwise.

One of the major analytical difficulties in modeling a direct-sequence

spread-spectrum multiple-access (DS/SSMA) communication system is the bit-

--------------
.....
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3 to-bit error dependence present in the multiple-access interference statistic,
. corresponding to a communication channel with memory. Although we can ’
caiculate arbitrarily tight upper and lower bounds on the probability of a

y single bit error due to multiple-access interference, determining the probability !

of packet error is no longer straightforward.

N 1.1. Previous Research

)

':-

K The International Standards Organization (ISO) has developed a

b Reference Model of Open Systems Interconnection (OSI) [1] composed of seven ]

;‘, layers, of which the lower three are most applicable to the special nature of 4

',‘s spread-spectrum communications. The lowest is the physical layer, which is :

X concerned with transmitting raw data bits over a communication channel.

-, The second level is the data link layer, which determines the packet structure,

:: error control capability, and transmitter-receiver bit and word synchronization X

Ly methods. Finally, the network layer controls message routing on the shared ;

¥ channel and regulates the flow of packets. '

! The majority of direct-sequence spread-spectrum research has been done

‘. at the physical layer in the area of modeling the nature of the multiple-access

',' interference and attempting to obtain bounds or approximations to the

i probability of bit error. Lehnert has developed a technique to obtain upper

‘ and lower bounds on the probability of data bit error by constructing the l

":‘ actual density function for the multiple-access interference, given random '

:' signature sequences for all users [2|. This method can be applied in a '
straightforward manner to derive a similar density for deterministic sequences

i as well. Prior work in this area involved the theory of moment spaces (3| to

! bound the effect of multiple-access interference on a single data bit, and the y

_‘ use of a Gaussian density approximation (4] after determining the mean and

4 variance of the multiple-access interference statistic. In [5], bounds on the bit

error probability for deterministic sequences were developed from the

:' convexity properties of the error probability function, and the characteristic \

& function of the multiple-access interference component is integrated in [6] to \

: find an approximation to the data bit error. .

; 2
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Research applicable to the data link layer in direct-sequence spread-

> -

spectrum comrmunications is relatively sparse. An attempt has been made in i
|7] to bound the packet error probability in a system employing convolutional
coding and Viterbi decoding for error control. The authors assume a certain d

3 worst-case conditioning to force independent channel error events; because of

B AN A

this, the derived lower bound on system performance is probably loose.

¢ The networking aspect of spread spectrum packet radio has been
addressed to a greater degree than that of the data link layer, but the area is A
by no means thoroughly researched, in part due to the complex nature of the y
multiple-access interference present at the physical layer. Most work in the
networking area suffers from an oversimplification of the lower two levels of

the ISO standard to allow a reasonably complex network model to be solved

i

with moderate effort. For example, a common simplification at the physical
layer is to assume that once the receiver acquires a packet through successful
decoding of the synchronization preamble or header, then the remainder of the
packet will always be received correctly [8]-{11]. Various assumptions are
b made to insure that the receiver cannot always synchronize or decode the
header properly, such as in [8], which analyzes a slotted ALOHA packet radio
network by basing performance solely on whether capture is attained, which is
in turn deemed successful if and only if no other transmissions occur within a ]
certain “‘vulnerability period” after the beginning of a desired transmission.

The communication channel is considered noiseless for the duration of the

packet, so successful capture is equivalent to a successful packet

", transmission.t '

; Raychaudhuri [13] derives a networking model in a manner somewhat

similar to that used in this paper, but uses a form of idealized spread-

spectrum coding which essentially provides a noiseless channel until the
number of simultaneous users exceeds a certain threshold, after which the \
channel rapidly becomes useless. This approach is also taken in [14], only the .*
channel is considered noiseless when M\ or fewer users transmit simultaneously,
. mchannel assumption is not without historical precedent. In his paper on

. narrow-band ALOHA networks, Abramson {12] assumes that a communication channel N

) is useless if two or more transmissions overlap; otherwise the channel is considered 0
noiseless.
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and useless otherwise. Signature sequences used in practice result in a more

S o M e

gradual channel deterioration as the number of interfering users increases. !

Polydoros and Sylvester [15] discuss the necessity of incorporating a more

X

realistic approach to packet error probabilities.

Brazio [16], [17] performs a detailed analysis of multihop packet networks !

"

. -
CY 2 5

incorporating various spread-spectrum signaling schemes. For his numerical

results, tractability is maintained once again by assuming an idealized capture

model, approximations to the probability of bit error, independent bit error

events, and no error correction capability. )

‘i - -y s
[0 X I

None of the networking papers researched incorporates bounds on or an

accurate approximation to the probability of bit error in the multiple-access

o environment (the most detailed work uses only a simple Gaussian

approximation), nor have they accounted for the bit-to-bit error dependency *

present on the communication channel.

1.2. Thesis Overview

All of the previous work in analyzing the networking aspect of spread-

spectrum packet radio systems have made simplifications at the physical and A

b data link layers to allow tractability of analysis at the network layer. Due to )

the complex nature of the DS/SSMA signaling environment, this thesis takes a

) different approach: that of performing an accurate analysis of the physical and

data link layers, and comparing these results to various less-accurate but

" widely-used approximations when analyzing the throughput and network

capacity for a simple slotted ALOHA networking protocol. This protocol

. allows us to use fixed packet lengths and provides full overlap of all packets

within a slot. In addition, all links in the network are assumed to be single 3

» hop, with no hidden terminals. This situation is likely to be encountered in a

large single-room factory assembly facility, for example, where fixed and %

A mobile machinery are controlled by a central computer via spread-spectrum .

packet communication. The slotted ALOHA model provides the framework to

incorporate a more accurate picture of packet behavior at the lower two ISO

layers while still producing useful results at the network level.
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. In this thesis, a method is presented in Chapter 2 which calculates the
probability of data bit error at a computational complexity equivalent to that o
needed for the bounds technique, but with an accuracy that is much greater i
§ N

than that offered by a widely-used Gaussian approximation. These results

h provide the groundwork for calculating in Chapter 3 the probability of packet

R L

success while accounting for the dependence of data bit error cvents due to

the multiple-access interference (MAI). The results are valid whether or not

A3
o,
i the packet has block error correction capability. Next, equations modeling the -
i . . .
' throughput versus offered channel traffic are derived in Chapter 4 for a slotted .
direct-sequence spread-spectrum multiple-access packet network, and P
! throughput vs offered rate plots are generated while using different v
! approximations for the probability of packet success. The effect on
; throughput is studied when a block error correcting cnde is implemented o
within each packet. Finally, network capacity for various packet and 4
i signature sequence lengths is determined, and the throughput per unit N
, bandwidth at capacity of the DS/SSMA method is compared with that of a v
4 N
; narrow-band channel. In Chapter 5, we offer some conclusions and suggestions
} for further research. N
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CHAPTER 2
THE PHYSICAL LAYER:
PROBABILITY OF DATA BIT ERROR

e e @

2.1. Introduction

At the physical layer, we are concerned with the transmission of raw data

-

bits over the communication channel [1], so our analysis is directed toward

finding the probability of data-bit error P, for a given signaling technique. An

appropriate DS/SSMA system model is used *o derive an expression for the

PP e ]

transmitted signal, which is then passed through a correlation receiver; the
signal present at the receiver's decision block has the necessary form to

perform a statistical analysis from which P, may be determined.

In this chapter, we present three general methods by which the
‘ probability of bit error may be determined when interfering transmitters
d employ random signature sequences. The first technique, developed in (2], is
somewhat involved but produces arbitrarily tight bounds on P,. We specialize
this procedure to rectangular chip pulses, calculate the computational
complexity, and use these bounds to check the accuracy of the other two
techniques. The second technique we use for calculating P, is the Standard
Gaussian Apprommation, which is based upon the assumption that the MAI is
a Gaussian random variable. This approximation derives much of its appeal

from the fact that it is very easy to compute, with computational complexity

[l AR N

of order I regardless of the size of N (the number of chips per data-bit), or K

P (the number of simultaneous users). We show, however, that when the
interfering signals are averaged over their relative delays and phases, the
Standard Gaussian Approximation is accurate only when K is large, leading to
the unfortunate consequence that the approximation is good when the bit

error rate is high and the system is performing poorly. Furthermore, when K

jo)
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0 is small, the Standard Gaussian Approximation is optimistic compared to the
D
N actual P,, so systems designed around this approximation may perform worse
» than expected. These shortcomings may be overcome through a new technique
U
:;. called the Improved Gaussian Appromimation, which is based upon the premise
R that, gi ific desired signat if the ph d delay of
N , given a specific desired signature sequence, if the phase and delay o
-:' each interfering signal are firzed, then the MAI is closely approximated by a
o Gaussian random variable. After finding the distribution of the variance of
J
::: this random variable for all possible combinations of delay and phase values,
[}
\::‘ and for all desired signature sequences, we can determine P, with much
LD
b greater accuracy than with the Standard Gaussian Approximation, but at an
n equivalent computational complexity to that offered by the method of bounds.
:;|
0

A

. 2.2. System Model
o 2.2.1. Transmitted Signal

»
5 The spread-spectrum system model examined in this thesis is similar to
9 . . . . )

that used in [2]| and [4], shown in Figure 2.1 for K users. The k-th user's data

o signal bi(t) consists of a sequence of unit amplitude, positive and negative,
“ rectangular pulses of duration T. If we define a rectangular pulse as

3 1, 0<t<T
: pr(t) = 0, elsewhere (2.1)
»
v then the k-th data signal becomes
o < p (k)
M) b(t) = > b] pr(t—iT), (2.2)

PR

¥ where the b; are taken from a random binary data stream having values of +1
b or —1 with equal probability. The k-th user is assigned a spreading waveform

. ai(t), also consisting of unit amplitude, positive and negative, rectangular

pulses of duration T,. Hence,
y
= g k)

|.: ak(t) = S G,] pT(v(t-—]TC), (23)
..' ]‘=—OC
"
y with the a; being produced by another binary stream of +1 and —1 values
§ independent of b,. The k-th user’s spreading sequence (or signature sequence)
a’
Wy
)
K
Bl
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Figure 2.1. DS/SSMA system model.
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.:: has N elements per data symbol. If we define a single spreading pulse as a !
“ chip, then we have N chips per data bit, and T =NT'_. :
) Phase modulation in this system is performed by combining a total of
)
> three signals: carrier, signature sequence, and data sequence. The k-th user’s ,
" carrier is given by '.
s )
A
‘ ci(t) = V2Psin(w .t +H;), (2.4)
., where P is the signal power, w, is the carrier frequency in radians per second, )
j and 0} is the phase parameter of the k-th carrier with respect to ¢,(t). Phase 4
Y modulation by a,(t) and b,(t) produces the transmitted signal b
)
“z = w_t +Hk + /2 ak bk( )) (25)
¥
e ="V 2Pa(t)b,(t)cos{w,t +,). g
? To account for the lack of time synchronism between transmitted signals, by
2 we incorporate a delay parameter 7, into (2.5), giving 3
o
4 Sp(t —7) = V2Pa,(t —7 )by (t —7)cos(w, t +y ), (2.6) X
a where o, =/, —w_ 7. Since the delays and phases are all referenced to signal
- 1, which we call the desired signal, it follows that 7, =, =0. Furthermore, we :
[ K
k7 take relative delays modulo T and relative phases modulo 2.
2.2.2. Demodulated Signal «
¥ If K users each transmit a signal of the form (2.6) onto a noiseless, 5
< attenuation-free communication channel, then n(t)=0 in Figure 2.1 and f
) K .
¥ r(t) = Vs(t—7). (2.7) 2
) k=1 Y
} o
" At receiver 1 (the desired receiver), r(t) is multiplied by a signal from a local 3
& oscillator which is both phase-synchronized to the carrier frequency and phase '
G modulated by a time-synchronized copy of the desired signature sequence, and :
the result is then integrated over the period of a data bit, producing the
".' output
0 :
» .'
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0 T h
P Z, = [r(t)a,(t)cosw,t dt . (2.8) .
0
j' By assuming that w, = 1/T and that the double frequency component of
ia r(t)cosw, t is completely eliminated by the post-detection filter, we have !
: A
; b, & | ‘
Z, =T\ b8+ N Ly (BT ) (2.9)
K ko2 -
N K
Y where [ | is the interference at the desired receiver from the k-th user, given
R by
¢
X Ik,l(b-kvr’('.)) = T_l[Bk,l(b-k’T)]coso (2'10)
"
]
with :
k) 4
4 By i) = b WR (1) + 0 IRy (7). (2.11) ;
5 The vector b, =(b¥) ,bék ) represents a pair of consecutive data bits from the 7
o, k-th signal, each of which partially overlaps the desired signal. The
K
o continuous-time partial cross-correlation functions are defined [4] as o
4 -
S R (7 fak t—r)a;(t)dt, 0<7<T; (2.12) s
| T ||
[ R, (7 fa,c t—ra;(t)dt, 0<7<T. (2.13) 3
X ¢
y Under our random signature sequence assumption, the probability is high :
" that interfering data will have signature sequences with low cross-correlation ;
i values with the desired signature sequence, so when the two sequences are »
multiplied together at the receiver, the resulting interference from the k-th o
K transmitter will integrate to a value [ (b, ©f) close to zero for X
! ’ L8
; k€l2,...,K}. In actual systems, sequences are carefully chosen so that ¥
cross-correlation values are kept small. -
. .
'«’
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: 2.3. Motivation for the Random Signature Sequence Approach

"

N Although specific signature sequences are chosen for each user in actual ;

] ;

.: DS/SSMA systems, analysis is sometimes facilitated by assuming that all users '-

\ . t

:. employ signature sequences that are completely random. Indeed, there are .
]

" many situations where deterministic sequence analysis becomes either 4

I impractical or impossible, such as: 1) the sequences of the interfering users are :;

‘ t

K unknown; 2) there are many users in the network; or 3) users may employ '

[; different sequences for each of a number of consecutive data bits. In case 1, \

[ .

that of unknown interfering sequences, using deterministic sequences in the
analysis is impossible, while in the other two situations deterministic analysis

produces prohibitive computational complexity. The random sequence

R

approach also offers simplified delay analysis, since receiver performance may

(o
%

be determined completely by examining interfering signal delays over a single

chip, not over one or more data bits as required by deterministic sequences. If

W

signature sequences are truly random, however, it follows that certain ‘‘bad”

y -
w2 I A

combinations of sequences could occur (albeit with low probability) between
simultaneous transmissions which can render the communication channel
essentially useless for two or more users over a period of time. Since this
situation is (hopefully) avoided in actual systems, one can argue that random i

A sequence analysis produces a lower bound on actuval system performance [17].

The results in this thesis are obtained by assuming that all interfering

users have random signature sequences, and that a different sequence is used h,
e for each data bit. However, most of the computations are performed by first -3
'f. conditioning on a specific desired signature sequence (actually, a specific f

autocorrelation value for a given sequence). The probability of data bit error v
l is then calculated for each of these particular autocorrelation values, and the \

results are averaged to obtain the probability of data bit error for a desired \

sequence that is also randomly generated. If the desired signature sequence is 3

known, then there may be no need to average over all possible desired .
sequences, since accuracy will be reduced and computational complexity N
P increased by doing so.
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d 2.4. Bounds on the Probability of Data Bit Error ““
(

, To obtain arbitrarily tight bounds on the probability of bit error in a _
! ,
! direct-sequence spread-spectrum signal, we can follow the procedure developed ::
b in {2] with some simplifications and improvements in accuracy. The procedure N
derives its utility by constructing the actual multiple-access interference ¥

; density function from all possible cross-correlation values of random signature 3
N sequences, but with computational complexity that is only polynomial in N %

-
S

b and K. In this thesis, we assume that no additive white Gaussian noise =

(AWGN) is present, so that all data bit errors are produced by multiple-access

interference alone, and we specialize this technique to rectangular chip pulses. 2

In all cases, conditioning on the number of simultaneous users K is implicit. ]

; 3
! 0
; 2.4.1. The Correlation Receiver Output Statistic 1
‘ We begin our calculation of the output statistic of correlation receiver 1 :"
.l by manipulating (2.12) and (2.13) as follows. Since there are N chips per data :"
bit, we can define the discrete aperiodic cross correlation function as '

N—-1-n . \

X I= :
{ N-1+n k . N

Ciiln) = Y a](_)na]('), 1-N<n <0 (2.14) by

§=0
3 0, |n|>N o
. : :
: allowing us to rewrite (2.12) and (2.13) as

R (1) =T [Cy ;(I=N)| + (=T, )[C, ;(1+1=N)=C, ;(I=N)},  (2.15) ]

At
and 3
| Ry j(1) =T [Cp i ()] + (7T )[Cp i (1 +1)—Cy . ()], (2.16) N
where 0<IT, <7<(I4+1)T, <T. For ¢=1, the parameter [ represents the o

number of complete chips in the time offset between the k-th and desired 5

) signals; i.e., ‘
by
!,
Bt
"
; 3

! W M ) " W e L W -y W T N U g ----.v-.---\",qnn--.
"’-'n‘!‘l‘!‘l‘!‘l‘a [} .'4'!‘!'!‘1‘?'“!‘."‘0‘. M a Tl X l‘! M i .:‘l- 9 .n Ao " AL .o .;. . N-'- iy ,. v , .u. W, "F '.‘-{ <
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I X
Tk
Il = (— 2.17 ]
- (217) ,
)
" Suppose each interfering signal uses randomly-generated signature ;
. sequences with a new sequence being selected for each consecutive data bit. In )
¥ '

this case, we need only examine delays over a single chip, since the average
effect of interfering signals on the desired signal is the same regardless of the

number of chips that an interfering data bit is displaced relative to the desired

‘. signal. Put another way, the k-th interfering signal is an infinite sequence of :

i pulses of duration T, with amplitudes uniform on {—1,1}, and having a

e random time displacement S; to the desired signal, where 0< 5, <T,.. We can

5 now let | = N—1, for example, which simplifies (2.15) and (2.16) to \

¥

!. {

) \J

W Ry 1(Sk) = T [Cra(—1)]+ Si[Cy 1(0)—Cy 1(—1)] (2.18) \

N-=2

‘: —( —-Sk)Ea 1)+S \’ () ](1)7 (]

;0 7=0 ]=0 Qg

. ¢
¢

; and f

[ N N

3 Ry 1(Sk) = (Tc—Sp)afflaf), (2.19) ]

b where ay (¥) represents the first chip in data bit bék this chip is independent of t

. al¥), the first chip in data bit bil). Substituting (2.18) and (2.19) into (2.11) )

: gives

d N-

Bea($) = (T.=50) | S oflaf?) + afPafl, (2.20)

} J==0 q

b <

N-1

¥ +8 Va ]()](1)_ 3

3

5 ¢

.' Note that since the signature sequence of the k-th interfering signal is random, 3

! By 1(Sx) no longer depends upon the interfering data bits b&kl) and bé"). Next,

) ! v

A the terms of (2.20) can be rearranged to produce

.o
e -e

-, -
P

[ - P - h e e e o . -~ s e
3 | %‘f&f &m‘ .r o, -’~ " ".....\,i- ‘\( W ,\-" o Wy f' ‘F‘ o \ ! .\ .\ 5 -‘ ‘ \. ﬁ‘ﬂ.\"\'\"\!‘\'ﬁ
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N o l#) (1 (1 4
By i(S) = ¥ Q541 (T. Sk) + Spa;i) (2.21) 4
j=0

+ Spaflaf) + (T —Sp)afflaf), .

L

At this point, we can simplify notation by introducing the symmetric
Bernoulli trial b, which has outcomes uniform on the set {~1,1}. Note that b
has zero mean and unit variance, and that each aj(k), and t e product of any
two or more independent a}k), may be represented by an appropriately
indexed b. We also condition on the desired sequence aV=d, for

J€1{0,1,...,N—1}. By using the fact that [d]-]2=1, (2.21) becomes '
N \2 A A .l
Bea(80) = X0 byuy |(Te=5) + Sudyiyan | (2.22) .(

1= O

+ Syby + (T, —Si)by

To gain more insight into the nature of (2.22), we note that d;d,,, € :‘
{—1,1}, so we can let :'
a={7:d;d;,, =1}, (2.23) 3

and
F={7idd,,,=—1) (2.24) ,
for 7€{0,1, ..., N—2}. After rearranging terms, we have 'f‘

By 1(St) = PiSy + @i(T.—5;) + X, T, + Y (T.-25;), (2.25)

where P, =bj and @, =b are uniform on {—1,1}, with a'
X, = \'b, (2.26) 3
7€ Al

and
Yi= \b;. (2.27) 1
j€4 ]

Equation (2.25) is identical to a result derived in [2] for interfering users which

select a signature sequence at random at the beginning of a transmission, but
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then repeat this sequence for each data bit in the message.

If we denote the cardinalities A =|o| and B =53], then X; and Y, are
produced by the sum of A and B symmetric Bernoulli trials, respectively, and

thus have densities

px (i) =12 |274; sel-A-A+2, ..., A-2,4) (2.28)

and

B 9~B
i+B
2

From (2.23) and (2.24), we see that A + B =N-—1. Furthermore, if we define

the discrete aperiodic autocorrelation of the signature sequence of receiver 1,

py, (1) = i jE{—B,—B+2,...,B~2,B}.  (2.29)

offset by one chip, by

N-2
\'a

c & Maf), (2.30)

s

7=0
then we also have A ~ B =C. Therefore,
_ N-1+C

A 2.31
: (2.31)
and

p - M= )

From (2.30), we find that, for random desired sequences, C is distributed as
the sum of N—1 symmetric Bernoulli trials, so the density of C is given by
N—-1

J+N-1
2

pC(J) — 2X—N ; J e {I—N’ 3_N, < e ey N—3’ "V—l} . (2'33)

Note that if any two of the four quantities A, B, C, N are known, the other
two may be found by using (2.31) and (2.32).

Finally, by substituting (2.25) and (2.10) into (2.9), we determine the
output statistic of receiver 1, with all signals at received power P =2, and
given K —1 interfering users, rectangular chip pulses, desired data bit bél) =1,

and normalized to the chip duration T, =1, to be
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=

T W, cosd, (2.34)

\
—

k=2

where
W, =P.S +Q,(1-S) + X, +Y,(1-25); 0<S5<T.=1. (2.35)

Since the random variables Py, @,, X, and Y, are composed of disjoint
sets of symmetric Bernoulli trials for a particular desired signature sequence,
they are conditionally independent given C. In general, the MAI is not
unconditionally independent, as we can show via a counterexample.t Suppose
N =2, so the desired sequence has C uniform on {—1,1}, and that a single
interfering user has a signature sequence of [1,1] and is chip- and phase-
synchronized to the desired signal. In this situation, when C =1 the MAI is
uniform on the set {—2,2}, and when C =—1 the MAI is 0. Averaging over the
values of C at this point produces a MAI density function with impulses at
—2, 0, and 2. If the MAI were unconditionally independent, then convolving
this density function with itself should generate the MAI density for two
interfering users. However, from the given information we know that it is
impossible for two interfering users to produce MAI values of either —2 or 2,
but our convclution result has impulses at —4, —2, 0, 2, and 4. We therefore
conclude that the MAI produced by multiple users is not independent unless

we condition on a specific C.

A signature sequence of length NV has N—1 chip boundaries, at which the
sequence may or may not change to a different value. The quantity B
represents the number of chip boundaries at which a transition to a different
value occurs. As a consequence, B can be treated as a measure of the amount
of “‘spreading” given to the desired signal. For example, B is minimized when
C is at a maximum of N-1, which is equivalent to a signature sequence of all
ones (minimum spreading). Conversely, when B is maximized, C is at its
minimum value of —(N-—1), and thus the desired signature sequence is
composed entirely of chips alternating between +1 and —1 (maximum
spreading).

* This narrative is, by necessity, elementary; the general case is given at the end of the
next section.
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v 2.4.2. Distribution of the Multiple-Access Interference
N We begin the calculation of the distribution of the MAI in (2.34) by

» letting K =2 so that there is only one interfering user, and we drop the
X
," subscripts £ on the affected random variables. Next, we condition on C so
¥
3: that the random variables P, @, X, Y in (2.35) are conditionally independent. '

.

o

-

The density of Wé[W|C=c] is perhaps most easily constructed by the

2 “brute force” method, where we perform further conditioning upon the ¢

discrete random variables P=p, @=gq, X=z, and Y=y. The further

p conditioned W now becomes an affine function of S, so S uniform on [0,1] ;
b" . LR . . - T . . ,
. implies that the conditional distribution of W is uniform on

¢ la,b]=[min{a’,b’},max{a’,b’}|, where a’=q+z+y and b’ =p+z—y. .
] (
N After averaging over the distributions of P, @, X, and Y, we have a collection :
R of fwc(w) which can, in turn, be averaged over the distribution of C to E
I' '

produce fy (w). This density is shown in Figure 2.2 for N =31. Note that

fw(w) consists of a component with a ‘‘wedding cake” appearance (produced v

v when the [a,b] are valid intervals), coupled with a set of impulses (produced
iy *
) when [a,b]| is degenerate; that is, when a =b). !

Our next step is to find the distribution of Wecos®, which we designate as

?, the random variable D, for ¢ uniform on [0,27]. Separate cases for N even X
and odd are avoided by assuming that N is odd. We now split fy (w) into a "
R set of N+1 conditional densities, (N+1)/2 of which are uniform on the set v
‘ {—a,a}, and (N+1)/2 of which are uniform on the interval [—a,a], where :
" a€{1,3,...,N}. A
Z: If a random variable x is uniform on {—a,a}, then y =xcos® has the "
¥

“arc-sine’’ density [18]

—a<y<a (2.36)

and is O elsewhere. (All density functions are defined to be 0 outside their

specified support intervals.) The distribution function for y is found by

integrating (2.36) directly, giving

1

¥

a

(2.37)

1 | -
F,(y) = ;-’rjsm

"

If x is uniform on [—a,a], then y =xcos has density {2]
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where log =log,. After taking an expectation over the possible values of a in
the densities given by (2.36) and (2.38), the result is fp(d), which is shown in
Figure 2.3. The figure also includes a plot of a Gaussian density function with

the same variance for comparison.

To find the MAI density when K >3, which we denote by f=(z), we make
use of the fact that the MAI produced by each interfering user is identically
distributed and conditionally independent given C'. Therefore, we must once
again condition on C and find fp)c(z) for each of the N possible values for
C. Next, each density is convolved with itself K—2 times and an expectation

is performed over C; thus:

f=(z) =E[fpic(z)* - *fpc(z)]. (2.40)

This function is not, in general, equal to E[fp|c(z)]* - *E[fp|c(z)|=

fp(z)* - - - *fp(z), which represents the MAI density if each interfering user
produced a MAI value which was indeed unconditionally independent from

that generated by the others.

2.4.3. Performing the Bounds Calculations

Since the random variable =, representing the MAI produced by K—1
interfering users, is zero mean, symmetry in the receiver output statistic given
by (2.34) allows us to find the probability of data bit error P, by performing
the integration

-N
P, = [ f(z)dz. (2.41)
-
To obtain numerical results, we are restricted to discrete representations of

f:(z), so we must be satisfied with finding either bounds on or an
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:&
approximation to P,. Fortunately, the bounds may be made arbitrarily tight E
(at the expense of increased computation time and memory requirements), so ‘
we pursue this course here. Since K —2 convolutions are performed on each of b
N  densities fp|c(z), we avoid notational distractions by using \
f(z)=fp|c(z) with cumulative distribution function F(z)=Fp|c(z). :l.
To prepare f(z) computationally for K—2 convolutions, we divide its J
support interval [—N,N] into 2NM subintervals, each of length 1/M, which we ‘j
index by 0,1, ...,2NM-1. The probability that the MAI is between o
a=[t/M|=N and b=[(i+1)/M]—N is F(b)—F(a), which we set equal to ~
f(z) Note that "
2NM-1 _ A
Y f(i)=1. (2.42) o
i=0 fl
After performing the convolutions and averaging over C, we obtain the i
discrete demsity fz(i), 1 €{0,1,...,(K—1)(2NM—1)}, for the total MAI ’ ‘
produced by K-—1 interfering users. Upper and lower bounds on the "'.',
probability of data bit error are now found by \
W
P = i}f;(i); I, = (K-2)NM +1, (2.43) ‘,,
i=0 .:}
and f":?.
I hY
PH = V(i) I = (K=2)(NM-1). (2.44) '

1=0 ;;

We obtain (2.43) by effectively concentrating the probability mass in each "
subinterval of f(z) onto the subinterval’s le ftmost point prior to performing ::::
the convolutions [2]. This maximizes the total probability mass in f;(i) on ;
the “‘wrong’ side of the receiver threshold, producing an upper bound on P,. : .
If the mass is instead effectively concentrated on the rightmost point of its ‘j
corresponding subinterval, then summing the values on the ‘“wrong’ side of g"
the receiver detection threshold after performing the convolutions produces a ;.:
lower bound on P,, given by (2.44). ;::
The procedure of calculating bounds on the probability of data-bit error :“

can now be summarized. We first condition the desired signal on C and then ::::
perform the following steps (computational complexity order is shown in ° :
NS
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, parentheses):
1.  Construct the density of W for each C (V?); 3
2. Find the density for Wcos® for each C (N3M);
p . .
; 3. Convolve the density of Wrcos® for each C with itselfl K—2 times Y
t (KN3MP); !
K id
) 4.  Average the set of densities over C (KN*M);
~
{
) 5.  Calculate bounds on P, (KNM).t N
1 iy
- We conclude that arbitrarily tight bounds on the probability of data-bit error '.f
in a DS/SSMA communication system may be determined by using a five-step 2
procedure of computational complexity which is of order KN3A2, %
: (1
f ;
(0
2.5. The Standard Gaussian Approximation e
k .
) K
In a narrow-band communication system with additive noise present at a A
N . . . . >J
! correlation receiver, a data bit error occurs when the integrated amplitude of ~d
the noise exceeds the integrated amplitude of the desired signal in the opposite
direction, causing a decision block error at the receiver. If the noise is a zero- N
i mean Gaussian process, then the probability of bit error may be caiculated by :
| first finding the signal-to-noise ratio (SNR). Next, Q[SNR|, defined by e
y Qlz! = fe Uy, (2.45) h
\/ 2 "z .
is used to evaluate the probability that a wrong decision is made at the :
receiver and a data bit error occurs. Additionalily, if the noise is white, then >
its autocorrelation function is impulsive, and the process produces values i
. which are uncorrelated (and hence independent) from instant to instant in )
: time. Thus channel errors are also independent from data bit to data bit. ‘
N t
, One may wonder whether it is possible to model multiple-access g
L) - . . . . . -‘
" interference in a DS/SSMA system as an additive white Gaussian noise process R
with variance equal to the MAI variance. It is obvious from (2.34) that the :
L o T ‘,‘
‘ * Actual computation time may be reduced by omitting step 4, performing step 5 for i
each conditional density, and then averaging the conditional P, over C.
N
'-
b
L
) b
1) ~
»
=
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MALI is additive, but the plot in Figure 2.3 shows that modeling the MAI as a "3
Gaussian random variable may not be accurate. Since we have a method to
calculate bounds on the probability of data bit error caused by the MAI, we

¢ can check the accuracy of the Gaussian approximation by finding the MAI

variance, calculating the SNR, evaluating (2.45), and comparing the results to

the actual probability of data bit error. Testing whether or not the MAI is y

white (or almost white), so that data bit errors may be treated as essentially

b independent, is a bit more difficult. To do this, we must examine the effect of ~

A the MAI on a collection of data bits called a ‘“packet”, a task which is N
postponed until Chapter 3. )

K One of the advantages of using a Gaussian approximation to the MAI
& produced by a single interfering user is that we gain unconditionul
: independence from the MAI generated by the other interfering users within a
single desired data bit. Recall from Section 2.4.2 that the actual MAI from
X each interfering user is only conditionally independent given C, but we now
show that the MAI is, in fact, uncorrelated.

From the structure of the density functions for the random variables P, ‘
@y, Xi, and Y, from (2.35), we find that, for kK&{2,...,K} and
I‘k E{le kaXlek }7

E[l'|C] =0 (2.46)

Ol

for any C. Combining (2.46) and (2.35), we have
- E[W,cos®,|C! =0. (2.47) by

2 We also know that the MAI is conditionally independent given C, which .

allows us to write

E{W jcos®; W cosb, |C| = E[W cosd, |C]E[W,c~sh, | C) (2.48)

TRt A

¢ for k€42, ...,K} and j #k. Taking expectations of both sides of (2.48)

over C and substituting values from (2.47) gives ‘4

E[W  cosb; Wicos®,| = E\W cos®|E[W,cosP| =0 (2.49)

VAP s

» and thus the MAI produced by each interfering user is uncorrelated (and

orthogonal) to that {rom the others. If we model the MAI as a Gaussian

random variable, then the MAI components are also unconditionally

independent.

)
L} [
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X )
K 1]
;‘ 2.5.1. Variance of the Multiple-Access Interference :
g Calculating a general expression for the multiple-access interference
¢ variance is facilitated by conditioning on C (or, equivalently, B) and by \
\ conditioning on the relative delays and phases of all interfering signals. For '.
) ¢
A notational convenience, we express the delays and phases of the interfering
v signals as random vectors S =(S,, ...,Sk) and £=(b,, . .. . dg). We also
W assume that N, the number of chips per bit, and K, the number of
> simultaneous users, are fixed.f
L \
o Since the random variables P, @i, X\, and Y, in (2.35) are zero mean '
\ and conditionally independent (given B), we conclude that the MAI terin in
D)
E” (2.34) is zero-mean and each term of the summation is conditionally ]
f independent. By using the fact that the variance of the sum of zero mean .,
. independent random variables is the sum of their second moments, the |
- {l
» conditional variance W of the MAI is given by
"', ]
Y K 2
M ¥ 2 Var [MAI|S,Q2,B] =E|| \)W,cosb | | Si,b.B (2.50)
i k=2
K 2
) = SE[ 218,.B ] [cos (bkw)k]
K
= L [H—cos 24,) ]Var [WkISk,B].
$ §
The conditional variance of W = W, is calculated as follows:

¥ 3
! VarlW |S,B] = E[P?S?|S| + E[Q*(1-5)*|S! + E[X?|B] (2.51)
- + E[Y(1-25)%|s,B).

{
? Since P and @ are uniform on {—1,1}, their variance is 1. The variance of X )
" can be found by expressing X as a sum of A = N—B—1 symmetric Bernoulli
. trials and noting that
kY
N
.
N

* In a later chapter, K will be treated as a random variable. :
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A :
; v
R Var[X|B] = N Varlb;] = N-B-1. (2.52)
7=1 -
:: By similar reasoning, '
Y
g
R Var[Y (1-25)|S,B] = B(1-2S)*. (2.53)
i
) Combining the above yields
l. K '
i \P = l: Zk (2.54) 4
v k=2 .
n’ !
where the Z, are identically distributed and conditionally independent given t
. B, and Z = Z, is specified by f
; )
g z=Uv, (2.55)
i}
'.:: with
h U =1+cos(2%), (2.56)
‘u
N V = (2B+1)(S*~S)+ N/2 . (2.57)
3
K Now we can determine the average MAI variance and use it to find an
- estimate for the average probability of data bit error. If the interfering signals ,
2 are not chip and phase synchronous with the desired signal, then the average :
X MAI variance is found by substituting expected values for S°—S and cos(29)
into (2.56) and (2.57). Since ¢ is uniform on [0,27] it follows that
E[cos{2¢$)] = 0, and S uniform on [0,1] implies that
! 1 1
A E{$?~S] = E({$? —E[S] = [s’ds — [sds (2.58)
» 0 0
. ]
N - 1
.-\ 6 .
< Substituting into (2.55) gives
. N—2B— 4
¥ E(Z|B| = 3N—2B-1 (2.59) R
¢ 6 -
} If the desired signature sequence is known, then B is also known and can be »
substituted into (2.59). Note that as B varies from 0 (minimum spreading) to
_* N—1 (maximum spreading), the MAI variance ranges from a maximum value ’
B o
3
s
- \
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of (3N—1)/6 to a minimum value of (N+1)/6.

If the desired sequence is random, then E[C]=0, which implies that
E[B]|=(N-1)/2, giving
ElZ] = EEIZIB] = . (2.60)
Since the MAI from each interfering user is uncorrelated to that produced by
the other interfering users, the variances add, so that the total MAI variance
from K—1 interfering users is (K —1)N /3. To find the probability of data bit
error using the Gaussian approximation for the MAI, we treat Z; from (2.34)
as a Gaussian random variable with mean N and variance (K~1)N/3. The
average signal-to-noise ratio is then

Yo
, (2.61)

SNR = 3N

B _ N _
VENV]  V(K-1)N/3 [K—l

which is identical to a result stated, but not derived, in [4]. The probability of

data bit error is then approximated by
P, = Q|SNR). (2.62)

At this point we digress for a moment and show the utility of using (2.55)
to find the MAI variance under various chip and phase situations. For

random desired sequences, substituting E[B] = (N—1)/2 into (2.57) produces
E[Z]|S,d] = N(S?—S+%)[1+cos(2d)] . (2.63)

If interfering signals are chip and phase aligned with the desired signal, for
example, then E[Z|S=0, $=0] = NV, resulting in
Ya
N
SNR, = |—— , 2.64
-l o
which also represents a worst-case SNR [19]. Using similar reasoning,
interfering signals that are chip aligned with random phases have

SNR, = (2.65)

9N Yo
K-1]|"'

while phase aligned interfering signals with random chip delays produce
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2.5.2. Accuracy of the Standard Gaussian Approximation

o Returning once again to interfering signals with random delays and

phases, we can now compare the results of the Standard Gaussian

Approximation to the bounds on P, (Figure 2.4), and w2 note that the

n approximation seems to be accurate only for rather large K. Large K implies
K ¢
A a high P, and poor system performance, so a designer will be more interested .
in accurate values for P, when K is small and the bit error rate is low. ;
i

Unfortunately, the Standard Gaussian Approximation is not only inaccurate in

- g o
-

N this region, but becomes very optimistic as N grows; consequently, using this .
. approximation to model multiple-access interference could result in a bit error 1
. rate that is higher than expected. The alternative is to use the bounds =:
derived in [2] and Section 2.3 at the expense of higher computational :“
4 complexity. !
b ¢

The above results show that, in general, multiple-access interference

cannot be accurately modeled as a Gaussian random variable when S and ¢ v
N are random unless the number of simultaneous users is large. To discover why .
M this is so, it will be useful to study how the Central Limit Theorem is used to |

justify the Standard Gaussian Approximation, and perhaps we can discover a

way to improve the accuracy of this approximation for smaller values of K.

2.6. Multiple-Access Interference and the Central Limit Theorem

The Central Limit Theorem is often quoted as justification for using some

-

form of a Gaussian approximation for the multiple-access interference density )

function when N is large (see, for example, {20]). However, we just showed

that a large number of simultaneous users K seems to be necessary for the

Standard Gaussian Approximation to be accurate, regardless of the number of

A, 8

chips per data bit N. Fortunately, though, there are specific conditions under

which the Central Limit Theorem does allow us to accurately approximate the

\ RN e 8 Ty . . o, Nt S - . ‘
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n
it
$'
)
}: multiple-access interference by a Gaussian random variable for large N and
)
i for any value of K. We will then use this intermediate result to derive the

Improved Gaussian Approximation for the probability of data bit error, and

we show that this approximation is more accurate than the Standard Gaussian

o
"

Approximation and more computationally efficient than calculating bounds on

: P,.

g We begin by stating without proof a form of the Central Limit Theorem
: which is useful for our applications [21]:

':g. Theorem 2.1 (Central Lirmut). Let X,,X,, ..., X,, ... be a sequence of
! zero mean iid random variables, each with finite variance 0. Let

j Z, = o n=1,2 (2.67)
“: el v 2, ... .

. be the normalized sequence, where S, = ngj. Then

i

L lim Z, ~ N(0,0%) (2.68)
K where N(/L,oz) denotes a Gaussian random variable with mean i and variance
¢ o, and “~'" means ‘‘is distributed as’'.

To examine the effect of the Central Limit Theorem on the multiple-

access interference, we normalize the receiver output statistic in (2.34) by N

and A as follows:

, 1 1 K
| (2=, = —————|N + \ W;cosd 2.69)
3 1 NK-1) N(K-1) = (
! 1/
N /2 1 K
, = |—7—| + —/———— ) W cosd; .
p (K—l ] NEK-1)i%
A The first term on the right side of (2.69) is deterministic and represents the

mean value of the normalized receiver output statistic, while the terms in the

summation express the MAI as a zero mean random variable.

W, o~

N T A T
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2.6.1. Many Simultaneous Users

We begin our investigation into the effect of a large number of

simultaneous users by fixing N and allowing K-—2>c. The Central Limit ]

Theorem may be applied directly, giving

o '
2 K v
N 1 2; WkCOS(bk (270)

1
—— | + —= lim ——
K-—1 \/N K—x \/T(le=2
~ N(0,1/3).t

K— x K—oc

Since the MAI converges in distribution to a Gaussian random variable,

the Q[z]| function given by (2.45) may be used to accurately find the

probability of data bit error for large K. The mean of the normalized receiver \
output statistic is V N/(K—1) from (2.69), but this value converges to 0 as :

K —cc, leading to the result

-

lim P, =Q[0] ="%. (2.71) n
, b
; This is not surprising, since increasing the number of simultaneous users for by,
( ‘

fixed finite NV eventually results in a useless channel.

We conciude that for a large but finite K, the normalized receiver output

JE O

statistic can be accurately modeled as a Gaussian random variable with mean
VN/(K—1) and variance 1/3, producing an average SNR of V3IN/(K-1).

This result holds even for a relatively small V. For a large N and small K,

™~ .

.

however, the applicability of the Central Limit Theorem is a bit more subtle, a

sitnation which we examine next. :

A o

N A
* At first, it seems odd that the variance of this random variable does not depend upon N
N. However, by multiplying both sides of {2.69) by V' N, the normalization by N is W
\
.~
L

removed and the MAI then converges in distribution to N(O,N/3), which agrees with
the MAI variance given by (2.60).
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f

‘ 2.6.2. Many Chips per Data Bit

{

' To analyze the effect of a large N on the distribution of the multiple-
y access interference, we must use care because NV acts differently upon each of
B the various terms of W, given by (2.35). We begin by fixing K, B, $ =3, and
¢ =0, and by bringing the normalization factor 1/\/]—\7- into the summation of
' (2.69), giving

: [ S S (2.72)
[ ¢ = + A\ " pcosdy 2.7

; K-1 VK—1 2o

'd

k where

s Prsp  Qp(l—-sy) X Y (1—2s)

W,k =

(2.73)

+ + +
VN VN VN VN

At this point, we find it convenient to introduce a quantity called the

uT P

spreading factor 1 €[0,1], defined as

B
oy .
"= N-1

(2.74)

Holding 1 constant as NN varies has the same effect as allowing B to vary in
proportion to N—1. For notational convenience, we drop the subseripts £ and

) rewrite (2.73) as

\ s 1—s 1 (1=n)(N-1) 1—25 "{N-1)
W = bp + b+ —— M b+ " b, (2.75)
N VN Y VN o VN o
j: where we have expressed A and B in terms of the spreading factor 1, and P,
¥

@, X, and Y have been represented as an appropriate sum of symmetric
Bernoulli trials. As /N becomes large, the first two terms on the right side of
(2.75) vanish and the limit becomes, for €(0,1),

1)

[

L)

} (1-n)(N-1) —9q (N=1)

: im W’ = lim —= 3 b, + lim ~o22"\7 b, (2.76)
) N—x N—2x \/N im1 N—=—oxe \/N J:I J

“ (1-n)(N-1) | aN-D)
Y = V1-y lim —L__ " b, +\/ﬁ 1-2s) lim VY b
N~x\V(1=p)N o7 ( N—x\yN o

n n
: = V11— lim L b, +\/7/(1—2s) lim —— Vb,
3 n—2C ni =1 n—x n j=l

The Central Limit Theorem can now be employed to show that the first term

"
.
'

.

4
[}
'
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in (2.76) converges in distribution to N(0,1—7), and the second term converges
in distribution to N(0, n(1—2s)?). For 5 =0, (2.76) converges in distribution to
N(0,1), and when =1, (2.76) converges to N(0,(1—25)?). The two terms on
the right side of (2.76) represent a normalized form of the random variables X

and Y, in (2.35), which are conditionally independent when given B.

Now the reason for fixing $ and S becomes clear: under these conditions,
as N—oq, equation (2.69) becomes a linear combination of independent !
Gaussian random variables, and hence the normalized receiver output statistic
¢; is also Gaussian with mean V N/(K—1)— x and variance
K

= N 144n(s2—s ]coszc‘). 2.77
7 ka[ n{sg—s) % (2.77)

Once again, we employ the Q[z] function to find the probability of data bit
error as N—o¢, giving for finite K,

lim P, = Q[x] =0. (2.78)

N—oo

This result leads to the logical conclusion that as the number of chips per data !
bit increases for fixed finite K, the communication channel eventually becomes

noiseless.

We now make the important observation that for large but finite N, )
provided relative delays S; and phases ®, are fixed, and for a particular 4 and
hence a particular B, the normalized receiver output statistic can be closely
approximated by a Gaussian random variable with mean VN/(K—1) and
variance given by (2.77). This observation provides the basis for a new
technique, called the Improved Gaussian Approximation, for finding the
probability of data bit error in a2 DS/SSMA communication system. This
technique is very accurate even for small K, and has computational
complexity equivalent to that of finding bounds on P,. In addition, the
Improved Gaussian Approximation lays the groundwork for calculating the

effect of bit-to-bit error dependence, the details of which are in Chapter 3.
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2.7. The Improved Gaussian Approximation

Returning to equation (2.50), we note that the conditional MAI variance

]
V¥ is a function of the delays and phases of all interfering signals and of the "
)
; desired sequence structure expressed through the quantity B; consequently, o

)

each outcome W =1 is produced by specific outcomes of S, ®, and B. In

‘ addition, results from the previous section show that as /N becomes large, ‘

Q[N/\/E] gives an accurate approximation of P, for a particular .

Therefore, if we can find the distribution of W, then the approximate Y

probability of data bit error can be calculated directly by

N Tal N i
W] = {Q[“\/—;]fw(tb)dw- (2.79) A

At first, the task of finding f ¢(v) appears extremely complex, since there may

- pe =E[Q

y be numerous interfering signals, each of which has an infinite number of 4

possible values for S and . However, the k-th user’s signal variance Z; given
by (2.54)-(2.57) is independent of and identically distributed to the variance of

the other users, so we can proceed by first finding the distribution of the

(3 ol g A B
e S g

variance produced by a single user.

2.7.1. Distribution of the Multiple-Access Interference Variance

The distribution of Z from (2.55) is found as follows. Since ¢ is uniform

on (0,27}, U has a form of arc-sine distribution |18] with density

1
folu) = —F———; 0<u <2 2.80
U( ) -\ (2 ) ( )

(As before, all density functions are defined to be 0 outside their specified

support intervals.) The conditional density of V is determined to bef

= ; M<v <ﬁ, (2.81)

R, M 2

T

where B = B+% = (N—C)/2. Finally, we note that U and V are

AN YT

= The derivations of (2.81), {2.82), and {2.84) are given in the Appendix.
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independent, allowing us to construct the density of Z = UV as

f (Z\_—“ 1 l VN2+V— 0<Z§1}/
AT eNE | VN= VB | ##N-E

where log =log,. Next, we remove the conditioning on B and obtain the result

(2.82)

N-1
f2(2) = E[fzp(z)] = 2"V \
]=0

This density is plotted in Figure 2.5 for NV = 31. The cumulative distribution
function of Z|B may be found by integrating (2.82), giving

3 [\/— °*

= _ Llzv—z]"z

(a2+02!

a(b’*+c?)

Faiplz) =1 + (2.84)

- 2VB sin™!

+\/;log—

where

Since the Z; in (2.54) are conditionally independent given B, the density of the
total MAI variance W is

folz) =E[f55(2)* - - *fzp(2)] (2.85)

with K —2 convolutions being performed. P

, is now found by evaluating
(2.79).

N T8 LAY 'n\‘vl'\\"-"l"
. . s &) (3 .

-). ‘)’V-J“




Density

Figure 2.5.

0.1 4

0.08 -
0.06 —
0.04 -
0.02 -
I - | | T 1
0 5 10 15 20 25 30

The density function of Z (N =31, K=2).

-
™
~
B
“w
"~
-‘
L




. AV VUWURATS

2.7.2. Computation Methods and Accuracy

To prepare [z g{z)=/f(z) computationally for K—2 convolutions, we ),
divide the interval [0,/V| into NM subintervals, each of length 1/M, and note
that the probability that the MAI variance is between i /M and (1+1)/M is '
F((i+1)/M) — F(i /M), which we set equal to f(i). By concentrating the !

P
"oV -

D
1
" probability mass in each subinterval onto its center point, we approximate the
3 continuous f (z) with a discrete f(¢) that is still a valid density; i.e.,
D
o: NM-1 .
' f(i) =1 (2.86) 1

=0 d

. However, while the support of f(z) is [0,N], the domain of f (i) only extends
3 from 1/(2M) to N—{1/(2M)]. Therefore, we must use care after performing ]

the discrete convolutions of f(z) and averaging over B to insure that each

by value of the new discrete density is subsequently matched to the proper MAI
. variance when evaluating (2.62). Specifically,
b f‘ll(i) = Pr \1’=21—_;%'—_1}; iE{O,l, .- ,(K—l)(NM*—l)}, (287)

thus

(2.89)

. 214K -1
yii) = =

.90
Y 2M (2.90)

In summary, calculating P, using the Improved Gaussian Approximation

A A Ay,

) requires the following steps (as before. computational complexity order is

shown in parentheses):

W,
N I. Construct the density of the variance of Weos® for each C (.Vz‘\/[);

A 2. Convolve the density of the M. variance for each C with itself K—2
times (KN M?):;

~
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N .

; 3.  Average the set of densities over the distribution of C (KN*M); )
t

L 4.  Perform an expectation to obtain an approximation for P, (KNM). '
V Thus the Improved Gaussian Approximation is a four-step procedure with an 3

\ !
v order KN®M? computational complexity.t Figure 2.6 compares the Improved )

Gaussian Approximation to bounds on P,, showing that this approximation is

quite accurate for all values of K, even when N is surprisingly small.

PR PP T T T T , T .‘_-.'_‘-‘_-.'\I\.'\-'_-“_,-\.‘\.:“q‘\.'\-' " '.' s 'J-.r A

iy 2.7.3 Deterministic Desired Sequences y
5 The final step in calculating the density function for the random variable
V¥ is to average over all possible values of B, shown in (2.85). However, the
W
K performance of a specific desired sequence in a multiple-access environment 1
] . . . . ;
X where all interfering sequences are random may be found by simply finding the 0
. '
:: density fz|p(z) for the value of B associated with the signature sequence, and
then evaluating (2.85) and (2.88). At the end of Section 2.4.1 we pointed out .
j that B may be treated as a measure of the amount of “‘spreading’ given to a y
. . 4
:? desired signal, so we would expect that the bit error rate improves as B !
- increases. Figure 2.7 shows this effect as B progresses from 0 (minimum !
spreading) to N—1 (maximum spreading) for V=31. The plot for B =0 is q
especially interesting; this represents the performance of a narrow-band signal .
)-
G in a direct-sequence spread-spectrum environment where the interfering signals
v
9 have random signature sequences.
; »
14 L
y -
4 2.8. Conclusion
N We have shown that the multiple-access interference can be modeled as X
" an additive Gaussian process for all practical values of NV, as long as all 2
: interfering signals have fixed delay and phase relative to the desired signal. .
* Since we have shown that both Gaussian approximations converge to the actual P,
s for large K, one could reduce computation time still further by comparing P, obtained
o) by the Standard Gaussian Approximation to that produced by the Improved Gaussian .
K. Approximation as K increases. Once the two values were within a specified error v
“ bound, the Standard Gaussian Approximation could be used exclusively for
Y, computations involving larger K. ‘
!. A
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:: The MAI variance can be expressed as a function of the delay and phase v
1]

K values, and thus is itself a random variable. We found the distribution of this

random variable and discovered that an accurave approximation to the '
probability of data bit error may be calculated by averaging the Q{z| function

over this distribution. In the next chapter, we show that, in general,

) "
4 multiple-access interference does not produce independent error events within '
1 a packet of transmitted bits, and hence cannot be treated as a white noise !

! process. However, if we again fix the delays and phases of all interfering y

signals, independent bit errors result, and the probability of packet success ;

can be found by using some of the techniques developed in this chapter.
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:: CHAPTER 3 :
v THE DATA LINK LAYER: '
ol PROBABILITY OF PACKET SUCCESS s
3 ,
{
\ 3.1. Introduction
5
;:' The purpose of the data link layer is to provide the functional and
:: procedural means to transfer data between network entities and to detect and
: possibly correct errors which may occur in the physical layer [1]. One method
‘: of accomplishing this task is to divide a message into one or more sets of data ;
" bits called a ‘‘packet’, and to transmit each packet separately. A packet ;
E: normally consists of a preamble, used for initial receiver synchronization, f
' followed by the header, which contains routing and destination information.
;' Next, the data is sent, and finally, some type of error control is appended to
‘,:. allow the receiver to determine if the packet was received correctly [16]. Error )
E: control may also be incorporated into the packet in such a way to allow a :
. number of data errors to be corrected as well, thus improving packet
I throughput in situations where the bit error rate is greater than zero. ;
, For a packet to be successful, the destination receiver must not be busy, .:
2 correct synchronization must occur, and the data portion of the packet must r.
, be received error-free or, if error correction capability exists, the packet must
2 not have more errors than the error control code can correct. Analysis in this (
‘: chapter is directed toward finding the probability of packet success given that
: the desired receiver is not busy and has already synchronized to the desired
signal containing the packet. As before, we let multiple-access interference
A cause all of the data bit errors in the desired signal, and all interfering signals
: have random signature sequences which are different for each consecutive data Y
o bit. 1
; |
y
;
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Because of the special nature of DS/SSMA signals, error dependence
exists from bit-to-bit, and finding the probability of a successful packet is not
particularly straightforward. The theory of moment spaces allows us to gain
valuable insight into packet performance when bit-to-bit error dependence '

produces a communication channel with memory. We do this by examining

o

[ X

three general cases: packets with no error correction capability, and packets

using block error correcting codes over both lightly and heavily loaded

e

channels. The utility of moment space bounds is limited, however, since these .

bounds cannot be made arbitrarily tight. We therefore turn to the Improved ;

P A K™

Gaussian Approximation, developed in Chapter 2, for numerical results. These
results are then compared with other methods which employ various ‘‘short

cuts’, such as using the Standard Gaussian Approximation and ignoring bit- ;

s

il to-bit error dependencies.

Some of the analysis techniques used in this chapter require treating the
probability of data bit error P, and other related quantities as random Ny
variables, where we eventually calculate their expectation. In most cases, it

will be obvious out of context whether the random variable or its

e

corresponding expectation is being used. In places where ambiguity may be

present, we use an overbar for the average value; i.e., P, =E|P,].

- -

- -
e, o« -

3.2. Mapping Successful Bits to Successful Packets
]

o

Suppose a packet of length L bits is transmitted over a memoryless

x -

binary symmetric communication channel with average probability of data bit ™
- error P,. Assuming no error correction capability, the average probability of

packet error is 4
£ Pp =1-(1-P,)t. (3.1)

To simplify notation, we define the probability of a successful data bit as

i @, =1 — P, and the probability of a successful packet as

Qe = 1 —Pg = (@) (3.2) :

If the packet includes block error control capability that can correct ¢ or K

fewer errors, the probability of packet success becomes Y

-
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¢ , .
Qr = ¥ |5 -y (@ (3.3)
1=0 )

which is simply the sum of the first ¢ +1 terms of the binomial expansion of
[(1-Q.)+Q.]'. Under multiple-access interference in the direct-sequence
spread-spectrum environment, however, the channel now has memory due to
the nature of the interfering signals, and using (3.3) to find the probability of

a successful packet may not be accurate.

3.3. The Origins of Bit-to-Bit Error Dependence

One of the analytical challenges presented by the nature of the multiple-
access interference on the communication channel is bit-to-bit error
dependence. Although the data sequence b(t) and the chip sequence a(t) are
modeled as random and independent from bit to bit (chip to chip), error event
dependence stems partly from the fact that the relative delays S; of the
interfering signals, while randomly selected at the start of a transmission, may
be essentially constant over the duration of a desired packet. It is also
possible that the r-f carrier stability of each transmitted signal may be such
that the phases ¢, of all interfering signals are also essentially constant over
the duration of the packet. (On the other hand, since the desired receiver is
not phase-locked to any of the interfering signals, we may find that phase
jitter in the interfering signals allows us to perform some degree of phase
averaging at the data bit level.) We consider two cases of dependency:
interfering signals that have constant phases and delays over the duration of
the packet, and interfering signals which produce constant delays but random
phases from bit-to-bit relative to the desired signal. Since the duration of a
chip is assumed large compared to that of a single r-f carrier cycle, random
bit-to-bit phases can coexist with delays which are essentially constant over a
desired packet. The magnitudes of the interfering terms in (2.9) depends on
the S=(S,, ...,Sk) through the cross-correlation functions, and on the
¢ =(b,, ..., Pg) through the cosine terms. There is, however, no dependence

upon the term ! in (2.17) since the signature sequence changes for consecutive

data bits in each interfering signal. As a result, if both delays and phases of
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all interfering signals are random from bit-to-bit within the desired signal,

then the error events are indeed independent.

For analysis to progress with reasonable effort, it is tempting to somehow
assume independent bit error events within a packet. This can be done by
working with the worst-case SNR shown in (2.64), which avoids dependencies
by fixing =0 and S =0, or by merely using the average SNR in (2.61) and
ignoring the dependencies. We now present a method which will allow a more
accurate calculation of the average probability of packet success by
incorporating into the analysis the effects of bit-to-bit error dependency.
First, we apply the technique of moment spaces, developed by Dresher et al
[22], to gain insight into the effect of dependent error events by constructing a
convex hull on the function mapping the probability of a successful bit to the
probability of a successful packet. Analytical results are then obtained by
conditioning on the dependent random variables to obtain bit-to-bit error
events that are conditionally independent, allowing us to directly map the
conditional probability of a successful bit onto the conditional probability of a
successful packet by using (3.3). We then perform an expectation operation
over packets to obtain the average probability of packet success. The
conditioning is performed on the random variables in the multiple-access
interference which are essentially fixed during the transmission of a desired
packet, such as the relative delays of the interfering packets and (possibly) the

relative phases of the r-f carriers.

3.4. Moment Space Bounds on Packet Performance

Suppose we have a random variable X for which the distribution Fy(z) is
defined on the closed and finite interval I =[a,b], but is otherwise unknown.

In addition, suppose we wish to find a specific moment of X given by

Elg(X fg z)dFy(z (3.4)

Given the above information, we can only make the obvious conclusion that
Elg(X)] is bounded by the minimum and maximum values that g(z) assumes

for £ €la,b]. However, if other moments of X are known, these bounds may

QIR A AR TG RGBS CHES GRS e e s T s e e S e Dl




be improved by using the theory of moment spaces. The theory is based upon

interpreting an integral inequality as a condition that a specific point lie in a

space determined by the convex hull of a given curve. The following theorem, 5

originally developed in [23|, formally states this relationship between the ]

moments of a random variable.

3.4.1. The Moment Space Theorem

s Theorem: Let X be a random variable with a probability distribution f
* function Fyx(z) defined over a finite closed interval I =|[a,b|. Let )

* g:(z), go(z), . . . ,gn(z) be a set of N continuous functions defined on I. The

moment of the random variable X induced by the function g;(z) is

m; = E[gl ] = fgt dFX (35) )

Now denote the moment space M by

) M={m =(m1,...,mN)ERN|m,~}, (3°6)

- oY

o o

where Fy ranges over the set of probability distributions defined on I and RY

2% R

denotes N-dimensional Euclidean space. Then Mis a closed, bounded, convex
set. Now let C be the curve r = (r,, ..., ry) traced out in R by r; = g;(z) )
for £ in I. Let H be the convex hull of C. Then )

o T T

H=M. (3.7)

In words, the convex hull of all the moment-defining functions traced out in
Euclidean N-space contains all of the moments defined by (3.5) for any |

ﬂ
P probability distribution Fy(z). For a proof of this theorem, see [23]. b

Suppose we modify the hypothesis of the moment space theorem by

2 considering 2-dimensional Euclidean space, removing the restriction that iy

I=la,b] is finite, and letting g;(z)==z and g4(z) be convex. The resulting

conclusion is Jensen’s inequality: go(E[z]) < E[gy(z)]. By forcing a finite

interval [a,b] for the support of Fy(z), we strengthen this conclusion

considerably by gaining the ability to fully bound the moments defined in bt

higher dimensional Euclidean space, rather than producing the single "

Py -
IS

inequality offered by Jensen. ;
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The moment space theorem relates successful data bits to successful

-
- -

packets in the following way. Let the probability of successful bit

transmission, conditioned on K—1 interfering users in the multiple access y
! environment, be a function of the relative delays S, and phases ¢,, where '
l' v
" 2 <k < K. Then @, becomes a random variable expressed as ]
'l ¢
1
' Qe (8,2) = Q. (Sp: - - -, Sy, - - ., Pk) (3.8)
W :
;: with distribution F (z). Now let RY = R? ¢g,(z) = z, and 4
2 ¢
;‘ t .
K} = L \ —s d
) ga(z) = ¥ |7 (1=2)(=)* (3.9) .
1=0
'
o A :
4:: =g(x;L)t)° ‘
t
h Equation (3.9) corresponds to the mapping of z = Q,(Sunder,d), the -
L -
probability of a successful data bit, to g,(z) = Qg(Sunder,®!, the probability
’:j of a successful packet, given that up to ¢ errors can be corrected within the ;
' packet and that the error events are independent from bit-to-bit. Also, the s
,:a first moment d
- E[Q.(S,2)] = Q. (3.10)
'
",: may be bounded or closely approximated from techniques presented in )
W Chapter 2. Once the endpoints of I are found, the theorem can be used to )
L)
g bound Q, the average probability of packet success. The left endpoint of the
: interval represents a lower bound, and the right endpoint represents an upper \
"
}: bound, on @, (S,$), the conditional probability of data bit success evaluated !
N over all possible values of S and $. If ¢ is random from bit-to-bit, then the :
left and right endpoints of I represent lower and upper bounds on Q,(S)=
(s E[Q.(S,2)|S] evaluated over all possible values of S.
>
:'_ Since the purpose of this discussion is to gain insight into the effect that
o dependent bit error events have on packet performance, we will present
o examples based upon both light and heavy channel loading with respect to the ’
\ MAI present, and under varying amounts of error control capability at the v
X ,
B desired receiver, without attempting to determine the endpoints for / = [a,b] )
ol explicitly. ),
-
¢
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3.4.2. No Error Correction Capability

Figure 3.1 shows a plot of g(z;L,t) = oL

corresponding to a packet of
length L =1000 data bits and no error correcting capability (¢t =0). We begin
by plotting a hypothetical I = [a,b| on the abscissa. Then we construct the
convex hull between the two points. Since g(z;L,0) is itself convex, the hull is
lower bounded by the function itself and upper bounded by the line segment
connecting the points (a,aL) and (b,bL). Next, we plot é—e on the abscissa
and draw a line through the convex hull. Then the ordinate values on the
boundaries of the hull represent the upper and lower bounds on Qp. These

values are labeled Q}*) and QY in the figure.

We now note an interesting result. The quantity (é.e )£ is the average
probability of packet success if the data bit error events were independent.
Since g(z;L,0) is convex on [0,1] for 0 <L < X, the independent error event
(memoryless channel) assumption produces a lower bound on the probability of
a successful packet; that is, Qél)=(§e )£, This is somewhat surprising, since
error dependency is usually considered ‘‘bad’ in communications, and yet we
just showed that reliability may improve when the channel has memory.
Recall, however, that we assumed no error correcting capability in the packet,
so a single error results in packet destruction. Therefore, positively correlated
bit-to-bit error events will tend to improve system performance by
concentrating multiple bit errors within a few packets rather than spreading
them uniformly among the packets. There is no analytical reason, then, to
insist on a chip and phase synchronous worst-case assumption to force
independent channel errors in a situation where no error control is used; a

tighter lower bound on packet performance is obtained by simply using

Q) =(Q.)*.

3.4.3. Light Channel Load with Error Correction

Figure 3.2 plots the function g(z;L,t) for a packet of length L =1000
with t =10, showing possible values for Qé") and QEU) under light and heavy
channel loading conditions. If the channel has a small number of simultaneous
users relative to the spreading sequence length N and the power of the error
control code, then I = |a,b] will map to a concave part of g(z:L.t). Now the

situation is opposite to that which occurred with no error control; that is,
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: Figure 3.1. Plot of g(z;L,t)=g¢g(z;1000,0), showing the procedure for finding _
QY and Q. .
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Plot of g(z;L,t)=g(z;1000,10), showing the procedure for finding

Q&:{J and Q%‘) on both convex and concave portions of the curve.
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assuming independent error events yields an upper bound on the probability of
packet success, and actual performance may be worse. This makes intuitive O
sense by noting that this situation is equivalent to a channel with a small
amount of multiple-access interference relative to the ability of the error
control code to correct errors. Therefore, if the errors that do occur are
distributed uniformly among all packets, the error control code may be able to
recover most or all of the packets transmitted. The situation changes when 3
bit-to-bit error events are positively correlated, since we would now expect a »)

few more packets to have too many errors for the error control code to handle,

resulting in poorer average performance. <
Wt
3.4.4. Heavy Channel Load with Error Correction ;
'
e

Under conditions of high MAI (large number of simultaneous users),
I ={a,b] may map to a convex part of g(z;L,t), as shown in Figure 3.2. In
this situation, assuming independent bit error events once again produces a .
lower bound on packet performance. This is because the bit error rate is so 4

high that the error control code is overwhelmed, and a large number of

»

packets are lost. Now the system performs better when the channel has

memory, perhaps producing a few more packets that can be recovered via

«_«

error control than would have occurred under memoryless conditions.

e I N

3.4.5. Bounds Using the Standard Gaussian Approximation

A similar procedure may be used to estimate packet performance within X
the framework of the Standard Gaussian Approximation to the probability of o
bit error given by (2.62). Since (2.62) uses SNR, which is directly related to ]
the MAI variance ¥ by SNR.=,U/\/E, we can map MAI variance to successful
packets through the composition

o
")
H 3
Qr(V;Lt)=g|P|—=|; L,t 3.11 e
el )=g W ( )
where :
: 1 z . :
' bz = 1-Qlz] = —— e "y . 3.12 -
o - =S (3.12) :
A plot of g(‘b[/z/\/E];L,t) vs W for L =1000. t =0, and ;=N =31 is shown in b

b W R R R L T R IR, V) LA N A SR YO A T " LTLE R IS TS TP S TR L T I T P R
AT AEENEY {6 0GR ARSI A S R SR AR MR VR ERON NN
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Figure 3.3. Unlike Figure 3.1, the curve is no lonuer convex in the region of

K light channel loading (few simultaneous users); consequently, the quantity .

(®[SNR])Y will not produce a lower second moment bound on the probability

of packet success when no error control is used.

3.5. Probability of Packet Success

We begin this section by referring to (2.34) and (2.35) and noting that if

we condition on the interfering signal delays S; and, if necessary, the phases

2 P, then the multiple-access interference would be independent from bit-to-bit \

u within a packet. The independent data bit assumption enables us to use (3.3)

directly to find the (conditional) probability of packet success. If we could do y
‘ this for all possible combinations of Sy and ¢, for 2 < k < K by finding

1 Qe =9(Q.;L,t) for each Q,(S,$), we would have a collection of conditional :
,‘: probability cf packet success values which could be averaged to find Q. E
E One possible analytic approach is to divide the interval [0, T, /2] into Mg N
. equal regions, and the interval [0, 7/2] into M, equal regions, and calculate @, -
; for every possible combination of K'—1 users in M¢M, regions. (Symmetry :
! present in (2.34) and (2.35) allows us to examine delays between 0 and T, /2 3
! rather than between 0 and T, and phases between 0 and 7/2 rather than ’
‘ between 0 and 27.) From these results, an approximation to the distribution 7
. of @.(S,$) is obtained, from which Qg =E{g(Q,; L,t)] may be found. The :

disadvantage to this approach is that the number of computations grows as

(MSM,b)K—l, which quickly becomes intractable, even for modest values of K

and MgM,. Instead, we take a second moment approach which does not

A ]

f exhibit an exponential growth in computational complexity.

In Chapter 2, we developed the Improved Gaussian Approximation by

conditioning on the delay vector S and phase vector ®, and we showed that

the resulting probability of data bit error after averaging over S and ¢ was a

close approximation to the actual P, =1—Q, found by the bounding

procedure. Since conditioning on S and ¢ also causes bit error events to v
-

become independent, the Improved Gaussian Approximation provides the

ability to accurately calculate the probability of packet success while

P
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.

K accounting for the effects of bit-to-bit error dependence.

3.5.1. Fixed Delay and Phase

0
;:‘ In this section we assume that all transmitted carriers are phase stable;
:: that is, each phase ¢ is selected .rom a distribution uniform on [0,27] at the
{
+ start of a desired packet, and then remains constant over the duration of the
1 transmission. The delays 3, are sclected from distributions uniform on [0,1] at
Y .. . . .
3 the beginning of a desired packet, and also remain constant during the
f
,. transmission. By following the same line of reasoning as that used in Section
= 2.7, we see that each outcome W =1 of the MAI variance is produced by
K} specific outcomes of S, ®, and B. so we can use ¢[N/\/J)] as an accurate
)
:: approximation to @, (%) for a particular . Furthermore, since channel errors
" are now conditionally independent, ¢(@,(¥); L,t) is also an accurate estimate
A\ - .
of the packet success probability Qg(1). We now realize that much of the
N work required for finding Qg =E!Qg (V)| has already been accomplished in
Al
:. Chapter 2: since (2.85) gives the density function for the MAI variance for
': any particular K, we have
)
N x
)-" Q =Eg(b__ Ltf\y()I (3.13)
- E Vv | l { [ Vol
‘. Perhaps the easiest method of computing (3.13) is to use the discrete
' density f (i) given by (2.81) and sum over the composition; thus
' So || A b | ute) (3.14)
Qe = Vg|P|—7—=F}L:t|flr), 3.14
o i=0 y(¥)
D
where
. I = (K-1)(NM-1) (3.15)
g and
) ’
A 21 4+K -1
1) = ——/. 3.16
X y() oM (3.16)
8 A plot of Q@ vs K for N =31 and L =1000 is shown as the solid line in Figure
L 3.4 for t =0 and in Figure 3.5 for ¢t =10.
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We can also obtain a discrete approximation j:Qh(]') to the distribution of

-~
- -
P .

L an
»

the prebability of packet success by using the following procedure. First, note

that Qg is a probability measure; as such, the support of the density function

.
!}
'
f: fo.{z) is [0,1]. We divide this interval into J subintervals, each of length
b 1/J, and let ‘
A A
| fo.(5) =P Loggp<dil €10,1 J—-1} (3.17) :
;0 QI-(] =rr J—QE_ J ’ JEewW, 1, , f . '
E ]
‘: Next, we let
R
. N +1

X A, ={i:L<g|o cLtj< 4 (3.18) 3
k) 7 ~9 Y el # ’ ’ 3
X [ J y(r) ] J !
L )
»
i 1 €40,1, , I} N
]
N Then :
1“ (]
4 fo,(5) = X ful2). (3.19) '
e . 4
I N IEA
N Knowing an approximation to fg (z) may prove useful in calculating the 1
i' distribution of packet delay in a communication network, since the ;
X “probability’’ that Qg is at or below a certain value z €[0,1] is approximately (
. 3 fold). (3.20)
1 1<Jz
[\
" Figure 3.6 shows the distribution of Qg for N =31 and various values of K.
".

In Section 2.7 it was pointed out that each outcome W =1 is produced by
) specific outcomes of S, ®, and B. As a consequence, the value for Qg given
% by (3.13) is based upon the assumption that C (and hence B) is selected from
., its distribution given by (2.33) at the start of each desired packet, and then
i
: remains constant over the duration of the packet. If C varies within a single
i desired packet, then we can find bounds on Qp by using the following N
; procedure. First, note that for any fixed S=3s and ®=0, if B, <B, then i
b
" | B, <¢|B,. Since QE(w)=g(¢[N/\/E];L,t) is a decreasing composition of
y ¥, we conclude that Qg |B, < Qg|B,. This allows us to obtain bounds, in the
f' context of the Improved Gaussian Approximation, on the probability of packet 4
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success for any desired signature sequence structure. For example, if a desired
packet has a B =B, which varies from bit-to-bit between a minimum B; and
" a maximum By, then Qg |B, < Qg|B; <Qg|By.

We now explore the possibility of using less accurate (but easier to 3

calculate) methods of finding @z, and we compare the results with those given

by (3.13) for various values of K. One approach, tor example, is to assume

) that all interfering signals are in chip and phase alignment with the desired h
)

signal. Not only does this situation provide independent bit error events, but )

also results in a worst-case multiple-access interference situation when all )

signals have equal power at the desired receiver [7|. We also know from

Section 2.6 that the Standard Gaussian Approximation is accurate for fixed !

3 delays and phases, so the probability of packet success under these conditions

¢ is given by

r
R: 3 =g\ N ;L,t] 3.21 j
<k g[ L\/E[WIS=Q,Q=Q]] (321)

:

-

K-1

[ ( 23
M)
[

P BB T XY I

Since the expectation can be expressed as a simple function of N and K,

computational complexity of (3.21) is very low; however, Figures 3.4 and 3.5

show that this worst-case situation produces a very loose lower bound on X

packet performance.

¢ A method which retains the low computational complexity of (3.21) while

producing results closer to those given by (3.13) is to use the average SNR \

from (2.61) in a Standard Gaussian Approximation to the probability of

- -

packet success. If bit-to-bit error dependencies are also ignored, we have

L VL)
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)
i‘
&
o )
r:. [ N g
4.' ~ 2) (
R o) =glb|l———|; L, (3.22) ;
. VE[V]
I" )
K
:"\ h
A Yo ¢
V
4 =glb 3N }; Lit|. )
K-1

[y
A
4 Figure 2.2 showed that the Standard Gaussian Approximation yielded results \
\ 4
R that were optimistic for small K and accurate for large K. Also, from Figure )
s A
) 3.3 we see that g(d>[/¢/\/§];L,0) begins as a concave function of z for small z,
¥ and then becomes convex when z is large. (The curve has a similar shape for
4 t >0). We conclude from the theory of moment spaces that (3.22) will '
i
:s' probably produce an optimistic estimate of packet success for a lightly-loaded ¢
)
) channel and then become pessimistic as the MAI increases. This effect is
;: shown in Figures 3.4 and 3.5. )
K )
,“3 As a third and final alternate method of calculating packet performance,
:7' we may wish to use the Improved Gaussian Approximation to produce 4
‘ accurate ¢, values, but again ignore bit-to-bit error dependence and estimate
W

Qg by \
: 5(3) = N
Q) =glE|d NG ” L.t (3.23)

S The convexity of g(z;L,0) in Figure 3.1 allows us to use (3.23) as a lower :
¢
j bound on packet performance, as shown in Figure 3.4, when there is no error !
:‘ correction capability. However, g(z;L,t) for ¢t >0 becomes concave as z
) approaches 1 (Figure 3.2); as a consequence, when error correction is used,
L (3.23) will be optimistic for small K and pessimistic for large K (Figure 3.5). .i
v An additional characteristic of bit-to-bit error dependence and its effect on \
Y packet performance is a more gradual roll-off of the curve given by Qg
compared to Qéz) and Qé‘”. This may reduce the accuracy of using a
: “noiseless-useless” channel approximation [14], where all packets are assumed Y
: successful if N\ or fewer users transmit simultaneously, otherwise all packets :
are considered lost. :
;\ D
) 4
I 4
U
»
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3.5.2. Fixed Delay, Random Phase

In certain situations, phase jitter from transmitter instability or changing
channel characteristics may allow us to average the phase of each interfering
signal over its distribution at the bit level within a desired packet. The

probability of packet success becomes

QE=E[9(X;Lat)i: (3.24)
where
o N ]
x = E|Q. (S| = [¢|— z)dz . .
[ecls] = [W-m.s( ) (3.25)

The random variable x in (3.25) is obtained by averaging the probability of
data bit success over the phase vector $, and is therefore a function of the
delay vector S. Next, g(x;L,t) is averaged over S in (3.24) to determine the
probability of packet success. Directly evaluating (3.25) is difficult, however,
since we need to know the conditional density fyjg(z). Since an
approximation to f y(z) is calculated in Section 2.7.2 by performing discrete
convolutions on fZ}B(i)s we cannot express fy g(z) as a simple function of S
and z. Instead, we are forced to use the procedure described in the
introduction to Section 3.5, where we divide the delay interval [0, T, /2] =[0,%]
into Mg equal regions and calculate a specific fy|g-(¢) for every possible
combination of K—1 users in Mg regions. In order to avoid the exponential (in
K) computational complexity associated with such a task, we will be content
to find upper and lower bounds on QE when no error correction capability

exists, and an approximation to @z otherwise.

If no error correction is used by the system, then we know that the
function g(z;L,0)=z’ is convex for z €[0,1], and Jensen’s inequality (Section

3.4) allows us to write

Qi =4 Ehhlgo]g E[ﬂx;Lﬁﬂ::QE, (3.26)
where x is a random variable given by (3.25). However,

ﬂEthﬁl=Q§’ (3.27)

from (3.23). Therefore, a lower bound Q~£) on (3.24) may be found by ignoring
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the effect of bit-to-bit error dependence altogether. An upper bound on (3.24)

is produced by once again using Jensen's inequality to give
Q[E [Qe|3];L,0]§E[g(Qe; L,0)|S}. (3.28)

Note that both sides of (3.28) are random variables; taking an expectation of

each side preserves the inequality [24):
Qe =E [g(x; L,O)] < E [g(Qe ; L,O)] = Q. (3.29)
But
E [g(Qe ; L,O)] = Qg (3-30)

from (3.13). Consequently, the probability of packet success with random
interfering signal phases is upper bounded by assuming that the interfering
signals have constant delays and phases throughout a desired packet. These
bounds are plotted in Figure 3.7; note that they are reasonably tight when the
probability of packet success is high, which is the performance region of

greatest interest to a systems designer.

The upper and lower bounds given by (3.26) and (3.29) have two
disadvantages: they cannot be made arbitrarily tight and, since g(z;L,t) is
no longer convex when ¢ >0, they cannot be used as bounds when error
correction capability exists. We can, however, loosely lower-bound QE by
allowing all interfering signals to be in worst-case chip alignment with the
desired signal, and we can approximate QE by averaging the MAI variance

over all possible interfering signal delays.

The lower bound on QE is easily obtained by using the Standard
Gaussian Approximation where interfering signals have random phases and

chip boundary alignment. In this case,

)L ¢( N L 3
— — |, t .
° g[ | VE[V[S =0 l ’ ' (3:51)
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Figure 3.7. Bounds on the average probability of packet success vs the ’
number of simultaneous users for ® random from bit-to-bit \
(N=31, L =1000, t =0).
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;: from (2.65). To approximate Qp we can substitute E{U]=1 into (2.55), giving
K Z’' =V, which represents a phase-averaged MAI value produced by one

s interfering signal as a function of its delay S. The density of Z’ is given by

‘ (2.81) which integrates to form

!' Fzp(v) = 20+B=N |- NB _, <X (3.32)

B 2 2

_ The distribution of the total MAI variance W is found using the techniques of

z. Section 2.7, producing a probability of packet success

:. Y N

; o =Elg ¢[\/m s Lt } (3.33)

) ~ ~

;:: A plot of Ql.(;l) and Qéﬂ as a function of K for N=31, L =1000, and ¢t =10 .

;:L: shown in Figure 3.8.

» 3.8. Conclusion

B

"

" From the results in this chapter, it is evident that the multiple-access

4 interference cannot be modeled as a process producing values which are

., independent from bit-to-bit within a desired packet. The theory of moment

F) spaces allows us to conclude that the dependent error events present in a

;" desired packet actually improves performance under all channel traffic

N situations when no error control is used, and under heavy channel loading

; when error correction is possible. The error dependencies will cause poorer

system performance when the desired packet includes error correction
. capability and is transmitted over a lightly-loaded channel. Since this latter

o situation is perhaps of greatest interest to a systems designer, the effect of

‘_‘ error dependencies should be incorporated into the analysis to avoid overly
__f optimistic estimates of network performance. In the next chapter, we examine
' the effect of error dependence on the performance of a direct-sequence spread-

R spectrum packet broadcast system using the slotted ALOHA protocol.
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Figure 3.8. Lower bound and an approximation to the probability of packet
success vs the number of simultaneous users for ¢ random from
bit-to-bit (N =31, L = 1000, t = 10).
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CHAPTER 4
THE NETWORK LAYER:
SLOTTED ALOHA MODEL

4.1. Introduction

A The network layer defines how packets of data bits are routed and relayed

R % T

between user nodes, and regulates the flow of packets [1]. In Chapter 1 we

discovered that many of the results in the literature concerning DS/SSMA

communications were obtained by simplifying the physical and data link layers b

to enable fairly complicated networks to be analyzed. Our approach is just

the opposite: we have endeavored in the last two chapters to produce an

accurate estimate of the probability of data bit error without the inaccuracies

of the Standard Gaussian Approximation, and we incorporated the effects of

dependent bit error events into our ectimate of the probability of packet

! success. We will now apply these results to a simplified network model to gain .

insight into the effect that a more accurate analysis of packet performance has

on the network throughput.

Throughput this chapter, we make use of the ‘‘slotted ALOHA” network

model, described in the next section. First, we derive the network throughput

equations for an infinite-user network. and show how arbitrarily tight bounds .

- on the throughput may be calculated. We then work mainly with the lower
¢ throughput bound and quantify the performance enhancement gained by R
incorporating error correction capability into the desired signal. Although :

throughput is increased by using error control, the required redundancy

shortens the effective length of the actual message; we take this into account \

by calculating a quantity called the “‘effective throughput’. Next, we define

network capacity as the maximum effective throughput, and we compare the \

capacity of an infinite-user DS/SSMA slotted ALOHA packet network with a
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. .
s |
:" number of narrow-band networks using an equivalent signal ban 'width.

W Much of the effort in this thesis has been devoted to comparing the bit

) and packet error performance by using three different approximations in the

. calculations. These are, in order of increasing accuracy (and increasing

o computational effort), the Standard Gaussian Approximation (SGA) from

& equation (3.22), the Improved Gaussian Approximation (IGA) from (3.23), and

o) the Improved Gaussian Approximation while accounting for bit-to-bit error

‘;_: dependence (IGA-D) given by (3.13). This chapter will explore the network

’,:; performance under each of these three approximations, and will allow systems

. designers to decide if the increased accuracy of the IGA and IGA-D methods

' are worth the extra effort required over the SGA approach. In order to l:
:‘ provide contrast between the IGA and IGA-D approaches, the IGA-D

‘E:. calculations are based upon phase stable transmitters, so that there is

) !

dependency from both delay S and phase $ parameters between the desired

and interfering signals.

o
2 ]

w 4.2, Infinite User Model

v 5
Yo

¢

P, Consider a large number of independent users (nodes) sharing a common

N . . . .
" communication channel and generating packets of length L bits. Each of the )
' n users receives packets at a very slow rate S; packets per time slot, and the
L time between packets is exponentially distributed with mean 1/S; which is
o large relative to the packet length. Then the arrivals of all newly-generated

Lal

o packets are Poisson [25] with rate

n

o S=N5.

N i=1 ]
- 3
L ]
L When a packet arrives at a particular node, transmission begins at the

' start of the next slot (Figurc 4.1). Each slot is long enough for a packet to be

. transmitted, and any associated guard time between slots is assumed short

E compared to the packet transmission time. It is also assumed that

N

propagation delays and slot timing errors are su.’. that the bit and packet

o

[

error probabilities developed in the previous sections hold.
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In the previous chapter, we showed that multiple-access interference from
two or more users in a particular slot could cause a packet error, requiring
retransmission. Figure 4.2 shows this situation from a networking point of
view: the channel receives both newly generated packets at rate S and
previously unsuccessful packets at rate R, also assumed Poisson. The offered
channel traffic is then Poisson with rate G=S+R. Of course, it is hoped that
the channel throughput rate is S, so that all newly arrived packets will
eventually be successfully transmitted. This will occur only if the channel is
stable; that is, if the queue containing unsuccessful packets occasionaily

empties [25].

4.3. Network Throughput

The calculation of network throughput gives an indication of system
performance by quantifying the average number of successful packets
transmitted per unit time. Since some of the packets may be received in error,
the throughput is at or below the channel “offered rate’”, or the average
number of packets transmitted in the same unit of time. By defining a unit of
time to be equivalent to the duration of a slot, both offered rate and
throughput are specified in ‘“‘packets per slot”. Although K, the number of
simultaneous users in a particular slot, is now a random variable, the relative
probabilities of each value of K €{0,1, ...} are determined by the channel
offered rate G. When G is small, the probability is high that K will also be
small, and the probability of a successful packet will be high. Throughput will
be low because of the low offered rate. On the other hand, if G is large then a
large K is also likely, but since the probability of packet success is now low, S
may still be low. We therefore expect S to be approximately equal to the
offered rate when G is small, reach a peak, and then eventually decrease as G

continues to increase.

We begin our study of network performance by reviewing the derivation
of the throughput equation for a narrow-band slotted ALOHA system. and
then we expand the concept to allow more than one successful packet in a

particular slot.
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4.3.1. Derivation of the Throughput Equation

For traditional narrow-band packet broadecast systems (slotted or
unslotted), throughput analysis is usually accomplished by ignoring errors
caused by AWGN at the receiver and assuming a given packet is successful if
and only if no part of it overlaps with another packet during transmission
[25,26]. If an overlap (or ‘‘collision’”) does occur, all packets involved
effectively jam each other and are lost. In the siotted ALOHA model with
Poisson packet arrivals, a packet is successful if and only if a slot contains
¢. The throughput is the
offered rate times the probability that a single packet will be successful; thus

just one packet, which occurs with probability e~

S=Ge ¢ <1. (4.1)

When spread-spectrum techniques are wused, collisions are no longer
catastrophic; instead, we must account for the degradation of the channel
when two or more users occupy a slot simultaneously. We do this by turning

to conditional probabilities.

Throughput may be viewed as the expected number of successful packets
in a typical slot [13]; as such, we can define S|k as the expected number of

successful packets given k packets in a slot. Therefore

k
Slk=ym

Re(k)™1—-Qe(k)F™, (4.2)

k
m

where Qg(k) is the average probability of packet success with £ total users in

a slot. Since /4.2) is simply the expected value of a binomial distribution, we

have

Slk =k Qg(k). (4.3)

After averaging over the Poisson distribution of k, the resuit becomes

A _‘4.
L

o WV
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In the first two expressions for S in (4.4), the summation index & represents

h averaging over the total number of users in a slot; because of the limit change 4

in the last expression, £ now becomes the number of interfering users in a slot.

4

4

3 Also, since Qp(k+1) < 1 for all kK € {0,1,2, ...}, we have W
) o
b X0 k rl
K S <G ¢ vE g (4.5) 3
' k=0 k! .

and thus the series in (4.4) converges.

“ If the first term in the summation of (4.4} is separated from the remaining »

terms, we can write :

x k
; S =GeC +Ge 6\ i—, Qp(k+1). (4.6) 3
k=1 % p

The term Ge ¢ represents the throughput when there is only one packet in a

[ oo o

1
* slot, which is identical to the throughput in a narrow-band slotted ALOHA
.
:: channel given by (4.1). The remaining terms in (4.6) represent the additional N
||
N throughput realized by using direct sequence spread-spectrum techniques. N
N
N

4.3.2. Throughput Bounds

.\

4 An exact evaluation of (4.4) is not possible because of the infinite sum,
' but we can use the fact that Qg(k) is a decreasing function of £ to obtain 4
'- arbitrarily tight upper and lower bounds on S. For example, the series may l'

be lower bounded by cimply truncating it after Qg(k+1) reaches some

i -

Y arbitrary minimum value; call it Qg (K, ): .

h K -1 Gk ;

' sV =Ge ¢ \ -ICTQE(k+1). (4.7) .
k=0 k-

Similarly, S may be upper bounded by letting Qg(k)=Qg(K,) for all £k ~ K.
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giving

It follows from (4.7) and (4.8) that

4 sl _ s k)6 —ge-ov G 9
;‘:" —S% = Qp(K,) |G —Ge k}:o . (4.9)

The quantity slu) — glt) represents the relative tightness of the bounds, and is

;2 shown in Figure 4.3 for various values of Qg(K,) when using the Standard

s Gaussian Approximation for @g(k). Although the difference between $*) and
: S increases with G, a proper choice for Qg(K,) will insure tight bounds for
L.

all reasonable values of G. To avoid excessively busy plots by showing both
o, bounds, we will instead use only SU) with Qp(K,)<107* for most of the

throughput results in this chapter.

We can now compare the SGA, IGA, and IGA-D methods of calculating
the probability of packet success in the network throughput equation. Figure

s 4.4 shows these three methods when there is no error correction capability in k
o the desired packet. In Chapter 3 we discovered that the IGA-D method
> produces the most accurate results, but it is lower bounded by using the )

Improved Gaussian Approximation while ignoring the effect of bit-to-bit error

dependence. This bound also manifests itself in the throughput curve; indeed,

the bound is quite pessimistic under heavy channel loading (high offered rates). z

On the other hand, the SGA analysis technique gives optimistic throughput

values under low offered rates and pessimistic values when G is high.
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Figure 4.3. Maximum difference bctween upper and lower bounds on
throughput vs offered rate for the Standard Gaussian
Approximation (N =31, L =1000).
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4.4. Packet Error Control and Network Throughput

In traditional narrow-band packet system analysis [12|, packets are
usually assumed to possess some form of error control, so that only error-free
data is ‘‘accepted” by the receiver. Error control (error detection) allows the
receiver to identify packets which have been involved in a collision and reject
the packets accordingly. Traditional analysis still assumes a noiseless channel,
so that a packet not involved in a collision will be received correctly with
probability 1. Conversely, if two or more narrow-band transmitters operate
simultaneously, the communication channel is considered useless during this
time; consequently, no amount of error control (error correction) will recover

the affected packets, which are then assumed lost.

As shown in the preceding chapters, multiple-access interference in a
spread-spectrum communications system can be modeled as additive channel
noise; as a result, we can no longer assume that successful packe’s were
transmitted across a noiseless channel. But, at the expense of additional
signal bandwidth, we no longer have the unfortunate consequence of a useless
channel when two or more transmitters occupy a single time slot. We can
conclude, then, that most packets adversely affected by multiple-access
interference were not totally destroyed from transmission across a useless
channel, but merely contain a few bit errors here and there which can be

corrected by an appropriate error control code.

Figure 4.5 shows the effect on network throughput when a packet of
length L =1000 bits can have up to 10 errors corrected at the destination
node. Although the throughput in ‘“‘packets per slot’ increases over the case
where t =0, the redundancy added by the error control code means that each
packet has fewer than L information bits in it, with a corresponding reduction
in actual data throughput. We can account for this data reduction per packet
by defining a quantity called the effective throughput and using it in
throughput calculations when ¢t >0.
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: Figure 4.5. Throughput vs offered rate for SGA, IGA, and IGA-D analysis
: techniques (N=31, L =1000, ¢t =10).

.

t
)

I. W ‘. .~.. s . ‘\) J.'.\ ('.‘ o ‘,[-", v! s ...' -".-‘. R -i."_;._. " -)‘- .~“ AR -‘_‘.._ Cepee




':’I".“l" MWL Sake fa¥ \ W ‘l‘.‘l.. . I’i""‘ ML ""' ."‘.’.' e N & '. -
i
‘l
77
ity
Sk :
L v
a0 4.4.1. Effective Throughput: Upper Bound '
g Suppose M message bits are to be encoded with a block error control code
4 into a packet of length L bits, where M <L. Then the quantity L—M ]
':', represents the redundancy added to the information to gain some form of error J
\ correction capability. It is logical to assume that a higher redundancy results ;
. in the ability to correct more bit errors in the packet at the cost of having :
i': fewer message bits within the packet; this fact is quantified in the /Hamrung !
o bound 27|, which states that to correct t errors in a block of length L bits, .'
-P‘ the number of message bits M within the block is upper bounded by A
u
ML - [D] (4.10)
[ \
K where
s:: ,
Il L
X D = logz[_\_J . jl (4.11)
x i=0
N
" The quantity M/L is defined as the rate R, of the code, which is simply the
K fraction of the packet devoted to the message.
L
Since each packet of length L bits now contains only M < L bits of actual
3 data, we can define the effective throughput T as
3 SI|L—-|D
T =S8R, = —— < —, 4.12
N ¢ L — L ( )
! where the units for T are ‘‘data blocks per slot”. Obviously, S.-T with
,:f equality when ¢ =0. Note that 7 is just the number of equivalent packets of
E L message bits required to obtain the same information throughput as S
'_ packets of M message bits and L —M additional bits for error control.
X Equations (4.10) and (4.12) are met with equality if and only if the error
. control code employed is a perfect code, defined in [27]. Such a code. however,
> may not exist for arbitrary L and M.
,. Actual computations are hindered when (4.12) is used directly because II;] ,
" . 3 E N
W is large for reasonable values of L and t; for example, lll%l;_ 108, The .
) \
o Appendix shows a way to directly calculate a lower bound on D, vielding the i
following result: '
L/
’
4
K
b
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C(L.t) = (L +%)logy(L ) — (¢ +"8)logy(t) — (L —t +'%)logy(L —t)  (4.14) -j

+(12L +1)"" — Yelog,(27) — (12t ) —12(L —t)7" .

4.4.2. Effective Throughput: Lower Bound

Obtaining a lower bound on T is slightly more involved. First, we must

relate S to T by finding a minimum performance limit on block codes in ;

' general; then using (4.7) as a lower bound on the packet throughput S for a

given G will produce a lower bound on the effective throughput T. We begin !

by stating the Gilbert-Varsharmov lower bound on block code performance [27:.

A -~

Consider a block code of arbitrary length L. The minimum distance d,,

}: is the smallest Hamming distance between any two codewords in the code. It ‘:1
: follows that the Hamming distance is related to the maximum number of
errors that the code is guaranteed to correct by the formula '::
3 d, =2t+1. (4.15) .
)
For a code that is not a perfect code, some codewords will still decode =\
correctly even though they may contain more than t errors; however, all 3
o
| codewords with ¢ or fewer bit errors will decode into the correct information ok
s word. It can be shown [28] that binary block codes exist which have a .

normalized minimum distance that satisfies

| d,. )
— > A, {4.186) ~
L

where A and the code rate R, are related by

R. = 1+Alog,A +(1—A)log,(1—A); 0<A <. (4.17)

Equations (4.16) and (4.17) represent the Gilber*-Varsharmov bound. where A

Lo e e T T S

is plotted as a function of R, in Figure 4.6.

Now we are in a position to determine a lower bound on the effective

throughput 7 as a function of channel offered rate G for a given packet
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Figure 4.6. Gilbert-Varsharmov lower bound on the normalized asymptotic
minimum distance of a block code vs its corresponding rate.
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length L, signature sequence length N, and error correction performance ¢.

B First, we use (4.7) to lower bound S as a function of G. Next, (4.15) finds d,,

for the desired ¢{. Although the quantity A in (4.17) is usually treated as a

o . . L

A (decreasing) function of R,, the mapping is one-to-one, so we can also treat R, _
:, as a decreasing function of A. Substituting (4.15) and (4.16) into (4.17), we A
$ '
i have .

C T = SR, > S[1+/ifog2fi +(1—/i)10g2(1—/i)}, (4.18) ;

where

iy (4.19)
Py L g

Since we are guaranteed that at least ¢ errors can be corrected with our code

(some subset of the collection of codewords may do better), the values for

QE(k) used in (4.7) will lower bound S directly by assuming that a mazmmum

of t errors can be corrected by any codeword.

At this point we are not yet certain whether the addition of error

: correcting capability to the packets will increase or decrease the effective

throughput of the network. Increasing ¢ will increase the average number of ¢

successful packets in a slot given that K packets are transmitted, but each

packet now contains fewer informatinn bits. Figure 4.7 shows a comparison of N

w
P S A

the lower bound on T, which we call T)), vs G for various values of t. (For

t =0, we set T“)=S(l).) Note that as t increases, the peak effective

T
)
L)

throughput exceeds that of a systermn with larger N and no error correction

s capability, but without the additional bandwidth penalty incurred by
2 increasing .N. However, since the addition of error control reduces the portion 3
- of a packet which is devoted to the message, we see that as ¢t increases for a .
_'. given .V, the effective throughput curve peaks more slowly. For example, if :
;. G =5 and N =31, then a network of packets using t =35 produces a higher y
;.' effective throughput than that given by the more powerful { =_0 error control
N code. As a consequence, if the offered .ate is low. then increasing the error
- correcting capability for each node in the network actually reduces the
E: effective throughput. As the offered rate increases, however. the situation ;
[~ eventually reverses and the more powerful error control code produces the b

greater effective throughput.
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A comparison of effective throughput (lower bounded) vs offered
rate for different error correction capabilities.
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If we plot the peaks of the effective throughput curves in Figure 4.7 as a

function of ¢, the result is the solid line in Figure 4.8. The dotted line in the

Figure is a plot of the actual throughput S([); as ¢ increases, the corresponding
reduction in actual information carried by each packet widens the difference
between S) and TU). The peak throughput is related to the network

capacity, which we define in the next section.

4.5. Network Capacity

When designing a packet communications system, determining network
capacity (maximum effective throughput) is an important consideration to
avoid instability from an offered rate which exceeds the traffic-handling
capability of the channel. In fact, if network capacity greatly exceeds the
required throughput, the network’s retransmission policy becomes less
important to system stability. Figure 4.9 shows this in more detail. Suppose
for a given network the required effective throughput is T,. The capacity of
scheme A barely exceeds T, and therefore the retransmission rate R must be
carefully regulated so that G =S+R falls within the interval a to avoid
operating in the unstable region above the curve. Scheme B has a capacity
exceeding T, by a greater amount, allowing much more variation in the

packet retransmission rate (interval b) before instability results.

4.5.1. Effect of Error Control and Sequence Length

In the last section we calculated a lower bound on the effective
throughput, which we called T(l), and used it to examine the effect of error
control on network performance. For notational consistency, we define
network capacity T, as the maximum value for T'; that is, Te 2 sup{T“)}.
Plots of the network capacity as a function of N for the SGA. IGA, and IGA-
D analysis methods are given in Figure 4.10. When ¢ =0, using the IGA
method without accounting for bit-to-bit error dependencies gives a slightly
pessimistic result for T for all values of NV, which is consistent with the bit
and packet error performance given in Chapters 2 and 3. However. as NV

increases with ¢ >0, the SGA and IGA methods produce results that are
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Figure 4.8. Maximum throughput and maximum eflfective throughput vs
number of correctable packet errors (N =231, L =1000).
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Figure 4.9. The effect of network capacity on the retransmission policy.
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: slightly optimistic compared to those from the IGA-D procedure. %
: It is also interesting to examine the effect that error control alone has on
: Tc. Figure 4.11 shows T as a function of ¢ for fixed N and L. Note that a ,
small amount of error correction capability increases effective throughput at ‘
: capacity substantially; then the improvement settles to a fairly linear function )
: of t as t increases further. Also, the SGA and IGA methods seem to converge A
X to the same value for T as ¢t increases. This is because higher error control ™
p capability means that network capacity occurs at a larger offered rate G. As :
; the offered rate becomes large, the probability that K is small is also small. M
' We discovered in Chapter 2 that the SGA and IGA converge to the same ’
X values for the probability of data bit error as K increases for fixed NV, so it is .t
' reasonable to expect that the packet success rates and network effective ':
: throughput performance will become identical as well. One of the main "
advantages of error control is that added throughput is realized without a
i corresponding increase in signal bandwidth. Given adequate error control, :
. then, one may wonder if the capacity of a DS/SSMA packet network compares )
favorably to that of an ordinary narrow-band slotted ALOHA packet network \
with respect to bandwidth efficiency. This issue is addressed in the next )
;. section. '
‘ 4.5.2. Throughput/Bandwidth Comparisons i
‘ The advantages of using spread-spectrum in a packet radio system must <]
3 be compared to the cost of this signaling technique in terms of increased N
p bandwidth. It is certainly apparent from results in this chapter that the ~
throughput at channel capacity of a direct-sequence spread-spectrum slotted {
. packet network is high because multiple packets can be successfully e
. transmitted in a single slot. However, to gain insight into whether spread- "
: spectrum signaling really offers any throughput advantage over narrow-band :
signals, we must normalize the throughput by the signal bandwidth; this will 5.
enable us to compare the performance of a single spread-spectrum system to a W
number of narrow-band networks with the same total bandwidth. In order to Q.
; avoid arbitrary cutoff limits on the (theoretically infinite) bandwidths of the 5‘,
signals in question, we note that N, the number of chips per data bit in the .
\ spectral-spreading signal, is also approximately the ratio of the bandwidth of 3
3
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Figure 4.11. Network capacity vs maximum number of correctable errors
(N=31, L =1000).
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% the spread-spectrum signal to that of the narrow-band signal. :
‘. The network capacity of a narrow-band slotted ALOHA system can be 3
: found by taking the derivative of (4.1) with respect to G and setting the result ‘
3 to zero, giving 9
2 s 3
, 2 _ -S-6) —o; (4.20) 3
5 thus maximum throughput of S=1/e = 0.368 is produced at an offered rate :
‘ of G =1. We now define the capacity/bandurdth factor .7 by '
K»
= 9= eilc (4.21)
E which is the ratio of the maximum effective data throughput of the spread- :'
; spectrum packet system to the data capacity of N narrow-band slotted ,
ALOHA packet networks. Using the results derived in the previous sections, b
we can find values of J for various values for N and ¢ (Figure 4.12). It is ;
apparent that a direct-sequence spread-spectrum packet system with no error '
control makes poorer use of channel bandwidth for a particular T, than using ,E
‘ N narrow-band slotted ALOHA systems. However, when a sufficient amount A
! of error control is employed to correct some of the packet errors caused by X
E multiple-access interference, the network capacity increases beyond that of N \
N narrow-band systems.?t N
) .
'. 4.8. Conclusion ’
! :
, By allowing the total number of users K to become a random variable
‘ with a Poisson distribution, we can derive arbitrarily tight bounds on the .
:: network throughput of a slotted ALOHA packet system using DS/SSMA )
signaling. Since each slot can carry more than one packet successfully, the D
throughput measured in ‘“‘packets per slot’’ can exceed unity at the expense of l
a greater transmission bandwidth compared to ordinary narrow-band phase- :
- msumption of a useless channel during narrow-band collisions, slotted
) ALOHA systems under traditional analysis will not i2alize any additional throughput Y.

from error correction.
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shift keying techniques. When no error controf is used, the IGA method :

- —

(Improved Gaussian Approximation without accounting for bit-to-bit error 3

dependencies) produces a lower bound on the throughput of the network

obtained with the IGA-D (Improved Gaussian Approximation incorporating J

- -

error dependencies) technique. The SGA (Standard Gaussian Approximation) )

-
[ XD

method is easy to calculate and has lower computational complexity than the )

other two methods, but provides only an approximation to the actual 1

throughput. If the bit-to-bit error events were truly independent, then the ‘

SGA approach is quite optimistic over most of the throughput curve shown in

o

Figure 4.4.

When error correction capability is incorporated into the packets, then

the IGA technique no longer lower-bounds the IGA-D results (Figure 4.5).

. Also, since error control adds redundancy to the data in a packet, the /

* throughput S is no longer an accurate indication of network performance.

Instead, we must account for the reduction in packet data by using the P

effective throughput 7', which is the average number of packets consisting

D )

entirely of information bits corresponding to S packets comprised of fewer

information bits coupled with an error control code. By using the Gilbert-

D Varsharmov lower bound on block error control code performance, we can )

calculated a lower bound on T .

The capacity of a network, which we define as the maximum effective

throughput, is an important design criterion. For example, if we insure that

! the network capacity is significantly higher than the required effective :
3 throughput, then the retransmission rate associated with failed packets can :
- fall between two widely-spaced limits. We can also compare the capacity of

the DS/SSMA packet network to that of N narrow-band slotted ALOHA y
, systems which occupy the same bandwidth. When no error control is used, ,‘h
9 DS/SSMA is only about half as efficient as the (relatively inefficient) narrow- ::
3 band signals, but as the error control code becomes more powerful, the ‘

capacity /bandwidth factor of the wide-band signaling technique eventually

exceeds that of /V narrow-band networks.
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! CHAPTER 5
: CONCLUSIONS

| 5.1. Summary of Results

[ g g SN N )

In Chapter 2, we compared bounds on the probability of data bit error in

LA

$ a direct-sequence spread-spectrum multiple-access communication system with

-

random signature sequences to the results given by the Standard Gaussian

4

Approximation. Although it is tempting to use this approximation for all bit

error rate calculations because of its simplicity, we discovered that under some

ol R ] '.'l

At

conditions the approximation is inaccurate. Specifically, if the relative delays
and phases of the interfering signals are random, then the Standard Gaussian
Approximation produces optimistic estimates of the bit error rate when K, the

number of simultaneous transmitters, is small and the bit error rate is

Plal™ai"iat™

relatively low. If the interfering signal delays and phases are fixed, however,

then the Standard Gaussian Approximation is quite accurate for all values of

bazn g ¥ LI

K. By finding the distribution of the multiple-access interference variance
' over all possible delay and phase values, we can wuse the Gaussian

approximation over the support of the distribution and average the results for

‘X £ A

I a much more accurate representation of the probability of data bit error. This

technique, called the Improved Gaussian Approximation, also allows us to

227
5

, account for the bit-to-bit error deperdencies produced by the relative constant

deiays and (possibly) phases of the interfering signals over the transmission

. e .
. .

¢

time of a desired packet.

3 v
>

The effect of bit-to-bit error dependence on the probability of a successful

v )

y packet is analyzed in Chapter 3. If no error control is used, then error

e

dependence improves average packet performance by concentrating the bit

"'-

errors that do occur within a few packets, increasing the number of packets

that are error-free. When error control is employed and the channel is lightly
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loaded, then performance diminishes when bit error dependencies exist, since
concentrating multiple bit errors within a few packets may exceed the
capability of the error control code to correct those errors. If the channel is 1
) heavily loaded, then performance improves when there is bit-to-bit error 4
dependence. In this situation, some packets are eflectively sacrificed by

receiving many more than their share of errors, while other packets now have

3 far fewer than the average number of errors and can thus be rescued via error ;
control.

) :

4 The results in Chapter 4 show that a slotted direct-sequence spread-

x

spectrum packet radio network possesses a significant throughput advantage

K over that of an equivalent narrow-band ALOHA system; and, provided a K
N z
A reasonable amount of error control is used to further combat multiple-access »

[
. interference, the throughput per unit bandwidth is also higher. We conclude .

that the advantages of the direct-sequence spread-spectrum signaling

g technique in terms of multipath resolution, multiple-access capability, and _
- communications security, along with increased bandwidth efficiency over that N
:: of a conventional narrow-band slotted ALOHA network, may be obtained at J
the expense of a more complicated transmitter and receiver design.
:
! :
‘ 5.2. Future Research L
- Following the structure of this thesis, there are a number of exciting :'
) topics to be worked in the physical, data link, and network layers to gain _
further insight into the general performance of a spread-spectrum multiple- k
; access packet network. -
2 The physical layer provides the foundation for any communication
: network, so accurate analysis here is essential for obtaining correct values for
A packet success and network throughput. We have concentrated on DS/SSMA
signaling using rectangular signature sequence pulses with phase-shift keying -._
2 and coherent detection. Non-coherent detectors are usually cheaper and less “
:: complicated, and other chip pulse shapes (such as the raised sine pulse) may b
; increase bandwidth efficiency. The near-far problem, where a strong -
| interfering signal prevents the reception of a weaker desired signal, is an :
By q
: )
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important consideration in finding the probability of data bit error. but
incorporating different signal amplitudes into the results requires some

knowledge of the topology of the network being analyzed.

Bit-to-bit error dependence effects are more difficult to analyze if the
interfering signals have signature sequences that repeat at the beginning of
each data bit, since there are now additional dependencies associated with the
particular signature sequence patterns. One of the remaining challenges at
the data link layer, then, is to work this problem without (hopefully)
producing expressions that are of exponential computational complexity. Like
the near-far problem, the analysis of specific signature sequences assigned to

specific nodes requires a knowledge of the network topology.

At the network layer, we have shown that it is possible to obtain accurate
results for network throughput while avoiding many of the crude
approximations sometimes used at the physical and data link layers.
Additional work is required to produce accurate throughput results when the
network is unslotted. The unslotted network is much easier to implement,
since we avoid the difficult task of providing a means to time-synchronize a
number of independent noaes. In narrow-band signaling, one rmotivation for
providing time slots in an ALOHA scheme was a doubling of network capacity
over the unslotted case (12|, but because of the multiple-access nature of
spread-spectrum, it is not clear what effect the lack of time slotting will have
on network throughput under this signaling scheme. It is obvious, however,

that the unslotted case is more difficult to analyze.

Throughput may be considered as a ‘‘macroscopic’” measure of the
performance of a specific packet network; at the ‘‘microscopic™ level a
designer may need to know the average delay (or its distribution) required for
a specific packet to reach its destination. Indeed, there are many applications
(such as industrial robot control and digitized voice transmission) where
minimizing packet delay is an extremely important design criterion. Future
work should therefore concentrate on developing a method for finding the

distribution of packet delay in a spread-spectrum muitiple-access network.

As a final note, we briefly compare the frequency-hopped (FH) method of
spread-spectrum signaling to the direct-sequence (DS) technique. Since FH

avoids interference from other users by changing the actual r-f carrier

3
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frequency according to some pseudo-random pattern, there arc no bit-to-bit
error dependencies to influence performance. Also, the near-far eflect is
reduced because of the isolation provided by the different frequency slots.
Frequency synthesizer design factors place a limit on the hopping rate of a FH
system, however, so the DS method with a short chip duration provides
superior multipath rejection. Eventually, however, the hopping rate of
synthesizers may be fast enough to combat multipath interference by allowing
the receiver to change frequency before the arrival of multipath components in

a specific frequency slot.
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)
i@ Appendix
: L]
)
K A.l. Derivation of (2.81)
) N
¥ Given the random variable S which is uniform on [0,1], we wish to find R
‘ the distribution of
3 2 N
K V = (2B+1)(S°-S)+ ol (A.1.1)
[ ) A
i We begin by finding the density function of X =S%—S as follows. From [29], R
’ for X =¢(S) quadratic in S the density of X is
y \
. fs(sy) fs(sq)
[} fx(.’li) = + P y (A12)
K |9’(51)| lg (52)| x
& !
¢ where s, and s, are the solutions to g¢g(s)—z =0 and g’(s;) is the first .
L derivative of g(s) evaluated at s;. Substituting "
; '
_ 12V 1+4z -
N, S] 9 = (A.I.B) ‘}
P ’ 2 .
" ‘

along with ¢’(s)=2s—1, into (A.1.2) gives
» fx(z) = ———2-——; L <0. (A.1.4)
: Vitdz 4 )
M) "
A =

We now note that the random variable V in (A.1.1) is of the form

V =aX+b, where a and b are constants; therefore

Pt
' 1 v—b - 0
-, fvlv) = Ix (A.1.5)

» |a| a MY
. Finally, substituting a =2B+1 and b =V /2 into (A.1.5) gives, for a specific B, 3
- 1 N-B N

<v< T, (A.1.6)

, fy(v) = —= = ; .
S v V B(2v+B—N) 2 ::

where B=B+%.

4
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A.2. Derivation of (2.82) '.
The random variable Z =UV is the product of two independent random
variables; as such, we have [21] 3
T z
fe(z)= [ fv | = [[v(v)dv, (A.2.1)
“~ I v | v \
where
] :
folu)= ———; 0<u <2 (A.2.2) 3
TV u(2—u) 1
and, for a particular B, fy-(v) is given by (A.1.5).
The quantity inside the integral in (A.2.1) is the joint density of Z and V; .'
ie. s
»
1 z ; '
fZ,V(:‘v) = l_—fU - fv(v), (:\23)
v v
which, after substituting the appropriate values from (A.1.6) and (A.2.2),
becomes ¢
frylzw) = —= —mme— (A.2.4)
Z'v &y - — ks
27V Bz v —bv+c :
where .
-~ kg
N—B+
b = _I__M (A.2.5) ,.
) 2 ‘
' and
= i%&. (A.2.6)
From a standard table of integrals, we find that 4
<4
f—ﬂ—-‘ = log [22} —b +2Vvi—bu+e (A.2.7)
V vi-bv+c
where log = log, . ‘
To determine the limits of integration in (A.2.1) we must find the support E
of fzv(z.,v). We know that 0<<U <2 and (N=B)/2<V <N/2, s0 Z=UV 4
is the product of two positive numbers and 0<Z < N. If we let U vary by
\
o
A
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between 0 and 2, then for V =(N—B’)/‘2 we have 0<Z < N-=B and for .

V =N/2 we have 0<Z <N. If U =0, then Z=0 for all V, and if U =2 then .

Z =2V for all V. We have thus completely defined the boundaries of the N

support for fZ'V(z,v), which are shown in Figure A.1. Now the integral in ¢

(A.2.1) may be split into two parts, giving N

Ny2 . ~

| fzyv(z,w)dv; 0<z<N-B !

N-B .

2 [

fz(z) = (A.2.8) /

N/2 N -

f fov(zv)dv; N—B <z<N

2/2 L
After substituting the appropriate values for b and ¢ into the top integral E

in (A.2.8), we obtain for 0 <z < N—B =

1 { N—z)+2VB(N—z)+B
f2lz) = —L—=log v B(N (A.2.9)

27V Bz | (N—z)-B :('

[ o _ 5

L VN=: +VE || Va=: + VE] ,

= ——.'— og - f

27V Ba L[\/—N_z VE|[Vvi= -VE] A

. :

_ 1 log VN—z +\/§ ey

27V Bz L\/N—z VB 3

Similarly, the lower integral in (A.2.8) evaluates as

1 VIN—z +'\/B? E

fz(z) = —log = (A.2.10) v§

27V Bz \/1_5'_ —VN—-z o

for N—B <z < N. Finally, combining (A.2.9) and (A.2.10) yields o
5

1 VN—z +\/§ . )

fz(z) = —log =, 0<:z<N. (A.2.11) 3
27V Bz VN—:z -VB N
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¢ X
R A.3. Derivation of (2.84) .
. L]
! To obtain the cumulative distribution function of the random variable Z
‘ for a particular B, we integrate (A.2.11) directly, remembering to find an
b appropriate constant of integration to produce a valid distribution function.
[ ~
:‘ First, we restrict z to be between 0 and N—B and we separate the log terms e
! in (A.2.11) to produce
3 1 1 — /T
X Fu(z) = = f = log [\/ N-—z +\/E]dz (A.3.1)

2-VB |7 Vz X
¢ K

.- - e[ VA -V e ] .

- ]

The two integrals in (A.3.1) will be called (1) and (2), respectively. Next, for z j

between .N—B and .V, we have

2

Yy

. Fy(z) = : - [f ! log [\/N—z +‘\/§]dz (A.3.2)

; 27V B Ve

: — [—=log {‘\/E —\/N—z]dz ’ ;
1] \/ V4 .
! b
y The first integral in (A.3.2) is identical to integral (1), and we call the second )

integral (3).

The following integral from a standard table of integrals will prove useful.

. If we let X=N—B =2V Bz —z* then :
‘
. f\/ £ dr = VX i\/g sin ! i;;\/j— (A.3.3)
: z AVIRY A
4 :
: - ‘2[ V (N-B)X :\/Er-}—;\/'—él :
— V N—B log : B
z
‘ .
A Integral (1): Performing a change of variable by letting s=N—y" we E
F
Y obtain >
3l Y
“ .
% L}
d
N K
Y

e L R o e o A ST = e
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‘0
i
N
)
y 1 -y .
b ~ f log [y +B]dy . (A.3.4)
2 \V/ N——u
;v Integrating by parts with
)
i» u=VN-y* du= —ﬂy—q, (A.3.5)
) \/X’V‘_!/-
b and
s =
N = log [y—l—\/E]; dv = ’—qy—f‘, (A.3.8)
y+\/E
P produces
Py VN e
[y V N—y?log [y +\/—} f——:—dy . (A.3.7)
y y-i-\/g

If we let y =r—\/_l§_ in the integral in (A.3.7), which we call integral (A), we

have

: [N— (»I—‘\/.é_ li’]‘/zd

_ (A) =] . (A.3.8)
.
; = f\/k—dx
‘.: T
X . . . o\ N o ‘\/_:- 2 7 . M
. which is given by (A.3.3) for X=N—B +2V Bz —2°. We now back-substitute
x=y+\/§ into (A), substitute (A) into (A.3.7), and then back-substitute
\ z =N—y2, which gives
J 'i—(l) =\/;‘log [\/N—z +\/§]—1] (A.3.9)
’ %
: - N—z
. Bsin~'| | +=2
. sin ;

: 2 [NVIN=B): +VB(N=5)+ N
L +V .N=B log ]
L \7—7 +v—

9 J Py ¥ Y - v
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3 x
) Integral (2): The procedure for evaluating integral (2) is identical (except p
for sign changes) to that used for integral (1) through the integration by parts,

o producing .
R .

= V N— 2 .
. é(?) ="V N—y log [y—\/—B_]—f——-—‘l{—dy . (A.3.10) ’
'. y—VB -

After a change of variables, evaluating the integral in (A.3.10) by using
. (A.3.3), and back-substituting, we obtain

f %(z):\/Z log [VNT—\/E]—ll (A.3.11) g

5
L) N Ya v
D = N—z ¢
‘ + VB sin™! '
] |
, _ 2 [\/(N—B)z -—\/B(N—z)+N] .
I + V N—B log - .
. \//."V—Z —‘\/_B- vy
, Integral (8): While carefully monitoring sign changes, integral (3) is )
evaluated by using a procedure of integrating by parts, applying (A.3.3), and -
4 back substituting, which gives ::
ﬂ '.
S é(3)=\/;[10g [ﬁ—\/z\/-z]—l] (A.3.12) iy
] Va B
E +VB sin™! [ [ N];z E
‘ A
. S 2 [\/(N-B)z —\/B(N—z)-h\ll R
A +VN=B log ~ . ;
n VN—: -VB %
) Now we can assemble integrals (1), (2}, and (3) into (A.3.1) and {A.3.2) to :
: obtain
3 f
) &
-
' ’
. "
b 3
, X
, A
1)
! t
1
s
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Y
R |
! ]
i 1 1 - '
: 2| =(1)——=(2) |+ C; O\Z\N—\/E '
> 2
2/1 B \J
‘ Fa(z)= ) (A.3.13) ‘
B 1 < *
{ 2| ) -3 |+ O N-VB <z<N :
;:, 27V B “ q
5 .
' where C is a constant of integration. To evaluate C, note that
' Fz(0)=—-1+C which implies that C =1. Finally, by substituting the actual :
! values for integrals (1), (2), and (3) into (A.3.13) we have, for a specific B, ‘
¥ .,
~ 1 - b 2 2
, Fapz) =1+ — 1V N—B log _122_“_'6_21 (A.3.14)
in‘ ” B a(b +c ) N
: [y | |
: CoVE || 22 ] |
N
o |
o .
Y +\/:':_log~z— ], 0<z<N, :
- :
4 where ]
a =VN-—-z + \/E ; N
\ s
= 0
El b = VN—z — \/E; :
'\ 1
\ ¢ = VN-B + V= ’
‘.
:: A.4. Derivation of (4.14) )
> The Hamming bound in equation (4.13) requires the calculation of the
)
! quantity
b4
vy
LlL
:: D =logy | N | (A.4.1)
: i=0
ol where l[;]: i!(lI:!—i)" Direct calculation of the sum prior to taking the log
! becomes impractical in many cases because of the large numbers involved. We
‘ can, however, approximate D by D < D with D—D = 1 or less without
. directly evaluating any of the binomial coefficients by using the following
, procedure.
F
&
,
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:: First, we need to find a range of values for ¢t such that '
if: ¢
4
!
' 4
:: The right inequality in (A.2) is obvious for all t < L, with equality when ¢ =0. j
:: The left inequality is true if X
0 L t-1 L ..
N 1> | (A.4.3) 1
e i=ol’ '
EN, !
" Since the binomial coefficients increase monotonically for 0 < i < L /2, L ]
even, or 0 <: < (L-1)/2, L odd, and since the sum in (A.4.3) contains ¢
. terms, we can conclude that the largest term in the sum is when ¢ =¢{—1, and
)
» thus the sum can be loosely upper bounded by k
3 3
E (
: t—1 '
e | Lols v L A.4.4)
h t—=11=— — |1
1=
. ]
. t
. so if we can find a range of values for ¢ which satisfy '
L : v
o L L "
= P (A.4.5)
i we will also satisfy (A.4.3). To do this, we note the recursion relation for ::
? binomial coefficients: p
(B 3.
- Ll_y (L] | L ||L=itr
‘_' 0 - 17 [ 1 - 1 —1 . ’ (A46) :
. allowing us to simplify (A.4.5) to e
W )
L=t+l oy (A.4.7)
! t -
¥ ht
‘
i which means that the left side of {A.4.2) holds when .
A ]
o 3
g t*+t < L+1. (A.4.8) )
Now that we have bounded the log of a sum of a series of binomial
A coefficients by the log of the largest coefficient in the series, we can compute N
' the logarithm directly by using Stirling’s bound on the factorial, which states h,
‘ 18 ‘
i )
.‘ ]
¢
Py
o, \
’ y
' J
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,:. (27)1/2nn+1/2e—ne(12n+1)‘ < n! < (2;_)1/2”n+1/‘2€—ne(12n) ' (A.4.9)

¥ . .
L} L! by using (A.4.9), note that our goal is to insure

YTy AT
MY that the right inequality in (A.4.2) is satisfied so that we have indeed produced

Before evaluating [

:: an upper bound on the effective data throughput T given by (4.13).
',: Therefore, the numerator L! should be replaced by the left inequality in
. (A.4.9), and the right inequality should be used for the denominator terms t!
Eg and (L —t)!. After taking logarithms, we arrive at the desired result:

D = (L+y)logy(L) + (12L+1)7" — Llog,(27) (A.4.10)

ay — (t+%)log2(t) — (L —t +%)log2(L —t)

< log, Licp, >0 24t<L+1.

¢

Although the left inequality in (A.4.2) no longer strictly applies, the Stirling
W bounds are close enough to the actual value for the binomial coefficients that
o we are still insured of a reasonably tight upper bound on the effective
throughput 7 without having to calculate the sum of a number of (possibly

large) binomial coefficients.
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ABSTRACT

Morrow, Robert Kendall, Jr., Ph.D., Purdue University, May 1988. Bit-to-Bit
Error Dependence in Direct-Sequence Spread-Spectrum Multiple-Access Packet
Radio Systems. Major Professor: James S. Lehnert.

Slotted direct-sequence spread-spectrum multiple-aceess (DS/SSMA)
packet broadcasting systems with random signature sequences are analyzed
within the framework of the lower three layers of the International Standards
Organization Reference Model of Open Systems Interconnection. At the physi-
cal layer, we show that a widely-used Gaussian approximation (which we call
the Standard Gaussian Approximation) for the probability of data bit error in
a chip and phase asynchronous system is accurate only when there are a large
number of simultaneous users on the channel; otherwise, this approximation
can be optimistic by several orders of magnitude. For interfering signals with
fixed delays and phases relative to the desired signal, however, the Standard
Gaussian Approximation is quite accurate for any number of simultaneous
users. To obtain a closer approximation to the probability of data bit error
for an asynchronous system, we introduce the Improved Gaussian Approxima-
tion, which involves finding the distribution of the multiple-access interference
variance over all possible delay and phase values and th;an taking a Gaussian

approximation over the support of the distribution and averaging the results.
To accurately analyze packet performance at the data link layer, we first
use the theory of moment spaces to gain insight on the effect of bit-to-bit error

dependence caused by the constant relative delays and (possibly) phases of the
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X interfering signals over the duration of a desired packet. If no error control is

used, we find that this error dependence increases the average probability of

‘ packet success. When error control is employed’ and the channel is lightly Ry
: loaded, then packet performance diminishes when bit error dependencies exist, .
: )
but performance improves when the channel is heavily loaded and the
multiple-access interference is high. Numerical results for the probability of h
packet success are obtained through the Improved Gaussian Approximation. ‘
‘
At the network layer, provided packet losses occur only from data bit :
5] h
i errors due to multiple-access interference, we show that a DS/SSMA packet "
} 3
v
; radio system using the slotted ALOHA protocol possesses a significant 3
¥ .i
» throughput advantage over that of an equivalent narrow-band slotted ALOHA
system. Furthermore, if error control is used to correct some of the data bit ,
'
§
. errors in the packet, then the maximum throughput per unit bandwidth of the ‘
o 4
DS/SSMA system is also higher.
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